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Abstract—Electronic components in vehicles communicate with
one another by broadcasting messages over the controller area
network (CAN) bus. The CAN message protocol is notoriously
insecure, lacking both encryption and authentication for perfor-
mance reasons. Vehicle manufacturers instead opt for “security
through obscurity” and try to keep the meanings of CAN
messages industry secrets. This approach has led to the discovery
of several alarming, and unaddressed vulnerabilities. For this
reason, it is imperative to develop a security monitoring system
for the CAN bus. However, any such intrusion detection system
is limited by severe memory constraints–in-vehicle ECUs rarely
have more than 1MB of RAM. In this work, we explore the
potential for lightweight graph kernel-based intrusion detection
systems that work in conjunction with byte analysis of individual
messages. Our approach extends the state-of-the-art in this field,
which only classifies batches of messages as malicious or benign,
rather than performing fine-grained anomaly detection. We
analyze the precedence graph formed by CAN message ordering
in conjunction with the bytes those messages contain to create a
high-performance, low-memory anomaly detector. Our analysis
revealed that this approach can detect a wide variety of attack
types in both moving and stationary vehicles. We demonstrated
that our method performs more precisely than prior works in
the same field while requiring less than 100KB of memory.

Index Terms—Automotive electronics, directed graphs, graph
kernels, network security, vehicle safety

I. INTRODUCTION

Increasingly, auto manufacturers are filling vehicles with
computers: machines to measure RPM, monitor engine heat,
track fuel usage, and even roll down your windows. These
computers need some way to communicate. This is the purpose
of the controller area network (CAN) bus. The CAN bus
allows each electronic control unit (ECU) to send messages
to any other microcontroller on the network [7]. By using a
centralized bus, and broadcasting each message, auto manufac-
turers can minimize cost, as there is no need for a router, and
very little wiring is used to connect each component. Though
the CAN protocol is used extensively in heavy machinery,
consumer vehicles, and airplanes, it is extremely vulnerable
to attacks. Because the CAN protocol is designed for speed
and simplicity, there is no encryption, authentication, or net-
work segmentation [47]. While this makes communication ex-
tremely efficient, it has some alarming security consequences.
For example, an attacker with access to the CAN bus could
remotely accelerate a vehicle to 200km/hr [45], remotely track
the vehicle’s location [43], or even deploy its airbags [1], [5].

Many have suggested changing the standard to include
encryption, or authentication to prevent such attacks [8], [30],

[41], but this still leaves older vehicles vulnerable and comes
at a significant cost. To address this, there has been grow-
ing interest in intrusion detection systems (IDS) to monitor
existing CAN buses for malicious activity. There are many
machine learning-based approaches to solve this problem,
but these approaches utilize compute and memory-intensive
neural networks [17], [18], [29], [33], [35], [38] and would be
difficult to implement in the memory-constrained real world.
While complex ML models can filter malicious messages with
near-perfect precision, it is not a valid assumption that every
CAN bus will have a dedicated GPU for those models to
live on. The ECUs identified by Wolf [44] as widely adapted
in commercial vehicles have at the high, expensive end, just
1.6MB of memory [12]. Given this constraint, it is unrealistic
to suggest powerful deep neural networks as a solution to this
problem. With this in mind, we turn to lightweight machine
learning approaches.

The current state-of-the-art in this regard are graph kernel
methods [13], [28]. Graph kernel-based IDS [34] works by
representing a system as a graph. Then, by using a graph
kernel, or a function that maps from the graph domain to
the vector domain, they compare the vector representation
of the graph to some baseline for normal behavior. A good
graph kernel function will produce vectors such that similar
graphs will be close to each other in Euclidian space. This
approach posits that given enough samples of a system’s
normal behavior, the manifold that bounds them will contain
all normal activity. Any graphs that are projected to points
outside of this space are said to be anomalous. This approach
has seen success for intrusion detection systems and anomaly
detection on traditional computer networks [2], [10], [19],
[20], [23], now we extend it to inner vehicle networks.

Messages on the CAN bus, however, are very different to
those found on traditional computer networks. One key dif-
ference is that every message is broadcast to every ECU [14],
so a graph representing inter-ECU communication would be a
complete graph. Though every message is broadcast, only cer-
tain ECUs are interested in messages from specific CAN IDs.
Though it may seem like this means inter-ECU communication
graphs could be meaningful, the knowledge of which ECUs
react to messages from which CAN IDs is a closely guarded
secret [37]. The sender, receiver, and meaning of the contents
of CAN messages is proprietary, so constructing a graph
in this manner is unreasonable. Instead, graph kernel-based
approaches to CAN IDS represent communication via prece-



Fig. 1: A CAN frame according to CAN 2.0 protocol. Under
CAN 2.0A, the CAN ID is 11b; under CAN 2.0B, CAN IDs
are 29b.

dence graphs [6]. The precedence graph is a data structure that
captures the precedence, or ordering, of CAN IDs over discrete
time intervals. These graphs are so effective because they often
approximate which components are communicating with each
other. For example, in the J1939 standard [31], many CAN
messages are requests for information from other ECUs. The
other ECUs quickly respond with an answer after receiving the
initial message, manifesting in an edge between those CAN
IDs in the precedence graph. We will analyze the precedence
graphs constructed during malicious and benign periods, and
we will show how doing this allows us to quickly detect when
the CAN bus is under attack.

Though prior works on precedence graph analysis are effec-
tive at detecting malicious periods of time in CAN data, they
still the lack fine-grained level of alerts required to be useful
as a real IDS. Because graph kernel-based approaches label
periods of time as malicious, any CAN messages sent while the
vehicle was under attack would be misclassified as malicious
as well. Assuming the goal is to intercept and block potentially
malicious messages, graph kernel-based approaches would
effectively disable the vehicle during the attack period, which
hardly mitigates the threat. For an IDS to be useful, it is not
sufficient for it to simply detect that the CAN bus is under
attack. An effective IDS would tell us which specific messages
are malicious, giving us the potential to mitigate an attack.

In this work, we present and evaluate our novel, fine-
grained, unsupervised detection method that can be applied
to individual CAN bus messages1. Our approach combines
precedence graph analysis with a simple byte-threshold tech-
nique to detect anomalous messages within graphs that ap-
pear anomalous. We will show how our surprisingly simple
approach produces improved results on several benchmark
datasets while remaining lightweight and memory-efficient
enough to run on a real-world ECU. We will show that
our approach achieves state-of-the-art results on a variety of
datasets and across several different attack types.

II. BACKGROUND

CAN Messages: Vehicles, both commercial and industrial,
are increasingly reliant on embedded computers called elec-
tronic control units (ECUs). These ECUs communicate using
one or more CAN busses. They broadcast messages to every
component at the same time. These messages are formatted
using the CAN standard [14]. We illustrate a simplified version
of this standard in Figure 1. In this work, we only consider the
CAN ID field, and the data field. The CAN ID is an 11 or 29b

1Source code available at https://www.github.com/cybermonic/CAN-IDS

(a) Normal operations. (b) Flooding attack.

Fig. 2: Two example precedence graphs generated based on
the Car Hacking Dataset for Intrusion Detection.

identifier for what message is being sent. Importantly, these
identifiers map onto the set of ECUs, meaning each CAN ID
originates from exactly one ECU, but each ECU may produce
CAN messages with several different IDs. Each message can
contain up to 8 bytes of data.

Precedence Graphs: A graph is defined as a set of discrete
objects, called nodes, V , and a set of relationships between
those objects called edges, E ⊆ V ⊗ V , where ⊗ represents
the Cartesian product. A weighted graph is a graph where each
edge has a (positive) weight associated with it, f : E → R+.
Because CAN messages have no obvious intended recipient,
it would be difficult to represent CAN communications as a
communication graph, as is often done in graph-based IDS [3]
As a result, prior works [13] and [24] model CAN data as a
precedence graph [6]. These data structures model the ordering
of events–in this case, the order in which CAN messages are
sent. Each unique CAN ID is a node, and observing one ID
after another creates a directed edge between them.

We illustrate two sample precedence graphs in Figure 2. The
subfigure 2(a) shows how during normal operations, certain
nodes have edges with very high weight (how often they
are observed in a given timeframe). In the DBC for the
J1939 CAN standard [31], they write that many messages
are requests for information from other ECUs. The ECUs
being queried will then broadcast the information being asked
of them. This is likely what causes certain edges to be so
heavily weighted in the precedence graph. On the other hand,
The subfigure 2(b) illustrates the precedence graph formed
during a flooding attack. This attack involves filling the CAN
bus with empty frames to disrupt normal operations, causing
denial of service. Now, rather than a chain structure of CAN
IDs messaging and responding to each other, we observe a
star topology with a central hub at CAN ID 0x00. This
is because the CAN frames injected during the attack were
empty, meaning the address is 0. Visually, distinguishing
between these two graphs is easy, but to do so numerically,
we turn to graph kernels.

Graph Kernel Methods: A graph kernel is a function that
maps from a graph to a vector, Φ : G → Rd. Ideally d ≪ |E|,
and Φ encodes key information about the graph, such that for
small values of ε, ∥Φ(G1)− Φ(G2)∥ − ε = 0 implies that the
graphs are similar in some way. In traditional cybersecurity,
benign graphs are sampled from the data, and the IDS models

https://www.github.com/cybermonic/CAN-IDS


attempt to find the boundary on the space Rd that encloses the
space of all normal activity [10], [20], [23]. In the world of
CAN analysis, we have only found one method which applies
this technique for anomaly detection: G-IDCS [28]. It is the
only graph kernel technique, and as far as we can tell, the
best approach to CAN anomaly detection available.

As we see in G-IDCS’s success, as well as other methods in
host- and network-based IDS, this method of unsupervised
anomaly detection can work quite well. Moreover, when
training is complete, these methods are fast enough for real-
time use, and–as we will show–memory efficient enough to fit
into a real-world ECU. However, graph kernel-based IDS has
a crucial limitation: these approaches classify full graphs as
either malicious or benign. They are not fine-grained. Unless
messages are individually classified as malicious or benign,
these coarse-grained IDS approaches will filter many more
benign messages than malicious ones, making them unrealistic
for real-world use.

III. METHOD

In this section, we will discuss how we convert from a
stream of CAN messages to a precedence graph. Then, we will
describe the graph kernel we used to analyze the precedence
graphs and a simple byte thresholding method we used to
perform edge-level anomaly detection. Finally, we will discuss
how we combined the graph kernel method with the edge-
level detection method. This forms an ensemble model that
fine-tunes the powerful graph kernel methods.

A. Precedence Graph Encoding

Given a list of all CAN messages that were transmitted
throughout a mission, converting them into a precedence graph
is very simple. Let C represent the |M| × 1 vector of every
CAN ID that appeared in the stream of messages, M. We can
then form an edge list by concatenating C with itself, offset
by one:

E =

[
C0:|M |−1

C1:|M |

]
(1)

the output is the 2× |M | − 1 dimensional edge list.
This matrix can then be subdivided into batches of N edges.

Like prior work [28], we also use batches of size 200. When
replicating the graph kernel from G-IDCS, we need to identify
three features about each batch of 200 edges: the elapsed time
it took to produce that many CAN messages, the maximum
degree in the graph, and number of unique edges. Calculating
the elapsed time is trivial, and is inferred from the timestamps
of the CAN messages.

Calculating the number of unique edges, and highest degree
node requires iterating over each batch twice. During a single
pass, using two hashmaps, the algorithm counts the pairs of
⟨src, dst⟩ it observes, and the individual nodes src and dst.
Because we define node degree as the sum of inbound edges
and outbound edges, counting node occurrences in the top and
bottom rows of the edge index is sufficient. Then, the map of
counts must be iterated over again to find the maximum value.

TABLE I: Dataset Metadata

Edges Malicious Edges % Malicious

CHD

DoS 3,665,770 587,521 16.03
Fuzzy 3,838,859 491,847 12.81
Gear 4,443,141 597,252 13.44
RPM 4,621,701 654,897 14.17

ADCD Stationary 4,818,638 1,171,665 24.32
Driving 3,875,860 772,576 19.93

B. Anomaly Detection

To detect anomalies on the byte level, we use a simple
thresholding approach. Let Z denote the encoding of a period
of normal activity generated using either of the graph kernels
we described in the previous section. We then calculate the
maximum, and minimum values across each row in the matrix.
This results in two new vectors, zmax and zmin. These two
vectors are the only parameters required by the model.

During the inference stage, as CAN messages are streamed
in, they are converted into a new precedence graph, G′ using
the previously described method. We say that a graph is
anomalous if

∃i :
(
Φ(G′)i > (1+ ϵg)zmax,i

)
∨
(
Φ(G′)i < (1− ϵg)zmin,i

)
.

(2)
Here, Φ is the graph kernel function, and ϵg is a threshold
value, 0.03 in all experiments we conducted. Of course, this
will only detect batches of N CAN messages as anomalous.

For fine-grained anomaly detection, we implement another
thresholding method. For each CAN message ID observed
during the period of normal activity, we track the maximum
and minimum values of each byte in the data frame of each
message they emit. These values are stored in hashmaps Max
and Min. Then, at inference time, we say a message Mt from
CAN ID i as anomalous if it appeared in an anomalous graph,
and if

Mt > (1 + ϵb)Max[i] ∨Mt < (1− ϵb)Min[i] (3)

where ϵb is another thresholding parameter, also set to 0.03.
We will show how this method combines the best parts of
each anomaly detection method: graph kernels’ high recall,
and byte thresholds’ high precision.

IV. EXPERIMENTS

A. Evaluation Datasets

We evaluate the anomaly detection methods on two datasets:
the Car-Hacking Dataset (CHD) [32], and the Attack &
Defense Challenge Dataset (ADCD) [16]. The CHD contains
CAN messages collected from a real vehicle undergoing 4 dif-
ferent attacks. We used benign periods from the attack data to
train our models during the experiments. The ADCD contains
data from four different attacks: fuzzing, DoS, spoofing, and
replay attacks. The files for this dataset are split into categories
based on if the vehicle undergoing the attacks was stationary or
moving. Additional details about the contents of each dataset
are available in Table I



B. Experiment Results

In our experiments, We evaluate IDS models on a per-
message basis. This means that these detection approaches
could be implemented as potential automated countermea-
sures. If we assume that there is some capability on the
network to inspect and filter messages, then any message that
is flagged as malicious could be dropped, thereby mitigating
the attack. For these experiments, we evaluated G-IDCS [28],
the byte thresholding method, the DAGA model [36], and our
proposed hybrid approach. G-IDCS is the base graph kernel
we use in our hybrid model; however, it can only classify
full graphs as malicious or benign, so we expect to observe
a low precision score when it is evaluated on its own. DAGA
interprets sequences of CAN IDs as n-grams. It stores every
n-gram of sequential CAN IDs it has seen in benign data,
then at runtime, it raises an alert if the sequence of a new
message and the previous n−1 messages has never been seen
before. This approach is notable in that it is also memory-
conscious and provably can be deployed on a real-world
vehicle microprocessor due to its small memory footprint.
However, in the original work, it was primarily tested on replay
attacks.

Tables II and III show the performance of the edge-level
anomaly detectors on the CHD and ADCD datasets, respec-
tively. We observe poor performance in G-IDCS’s precision; it
has a high recall, as it can quickly tell that several messages
in the aggregate are anomalous, but it is unable to determine
which ones make it so. This supports our claim that most
groups of messages inspected by the graph kernel methods
contain mostly benign messages, as this points to an increase
in false positives. In particular, the spoofing attacks have the
lowest precision when evaluated this way as they are slower
and stealthier than the other attacks. These results are notable
compared to the evaluation done in the original G-IDCS paper:
there, it was evaluated only on groups of N messages and
achieved scores > 0.99 across every metric. When evaluated
on the message level, there is a sharp decline in the score.
Surprisingly, the DAGA model performed about equally, or
slightly worse than G-IDCS did across both datasets. It could
be that it was too specialized for replay attacks to generalize
to different attack types, or just that there was not sufficient
training data for it to observe every possible benign n-tuple.

Especially in the CHD dataset, the simple byte threshold
method was able to achieve 1.0 recall on every attack. This
makes sense for the fuzzing and DoS attacks, as they flood
the can bus with 0x00 bytes or random values respectively,
so they are easy to capture. In the ADCD dataset, because
attacks are mixed together, the Byte Threshold detector does
not perform as well.

To take advantage of the high recall of the Byte Threshold,
and the high precision of G-IDCS (when evaluated at the graph
level), we combine the two approaches into a hybrid classifier.
This approach only alerts if the G-IDCS classifier labels a
period of messages anomalous, and there is an anomalous byte
in the message. Though this approach is simple, it outperforms

TABLE II: CHD Message-level Anomaly Detection

G-IDCS Byte Thresh DAGA2 Hybrid

DoS

Accuracy 0.8522 0.9984 0.8578 0.9983
Precision 0.5203 0.9903 0.5300 0.9903
Recall 0.9992 1.0000 0.9921 0.9992
F1 0.6843 0.9951 0.6909 0.9948

Fuzzy

Accuracy 0.7828 0.9819 0.8085 0.9924
Precision 0.3708 0.8764 0.3903 0.9458
Recall 0.9980 1.0000 0.8790 0.9980
F1 0.5407 0.9341 0.5405 0.9712

Gear

Accuracy 0.6987 0.9642 0.7789 0.9838
Precision 0.3085 0.7895 0.3346 0.8924
Recall 0.9997 1.0000 0.6526 0.9997
F1 0.4715 0.8824 0.4424 0.9430

RPM

Accuracy 0.6852 0.9636 0.7012 0.9825
Precision 0.3104 0.7955 0.2869 0.8903
Recall 0.9996 1.0000 0.7467 0.9996
F1 0.4737 0.8861 0.4146 0.9418

both of its component models in nearly every metric. By using
G-IDCS as a filter for what to send to the more alert-prone Byte
Threshold, we get the best of both models. The graph kernel
very precisely senses which periods of time are anomalous,
and then the Byte Threshold analyzes which messages cause
this. When the two are combined into the hybrid model,
important metrics like F1 reach the high 90s.

TABLE III: ADCD Message-level Anomaly Detection

G-IDCS Byte Thresh DAGA3 Hybrid

Stationary

Accuracy 0.6240 0.5712 0.5150 0.8120
Precision 0.2465 0.1838 0.1519 0.3534
Recall 0.9983 0.8189 0.7234 0.8118
F1 0.3954 0.3002 0.2510 0.4924

Moving

Accuracy 0.5951 0.6581 0.5115 0.9967
Precision 0.1955 0.1929 0.1256 1.0000
Recall 0.9686 0.8133 0.6919 0.9651
F1 0.3254 0.3119 0.2125 0.9823

A notable exception to this is the data from the stationary
vehicle in the ADCD dataset. Though the hybrid approach
is still the best-performing one, it still lacks precision. This
is likely because the benign stationary vehicle data does not
encompass the entire benign space of possible CAN messages,
but this requires further analysis.

V. EFFICIENCY STUDY

Prior work [36] found that in realistic automotive ECUs,
there is often less than 1MB of flash memory. Therefore,
to support our claim that this approach is suitable for real-
world use, we evaluate the runtime and memory usage of
a C++ implementation of our hybrid approach. We used
the std::unordered_map<int, char*> as the data
structure for the max and min byte lookup tables, and represent
the precedence graph as a single int array of CAN IDs. Other
than using the boost::hash_combine function to define

2Using optimal n-grams lengths 3,4,4, and 5.
3Using optimal n-gram length 3 for both datasets



the hash function used by the map, the code only uses the
standard C++17 library. Using the Valgrind memory profiling
tool [27], we found that the peak memory use was 95.4KB,
which is well within the constraints of mid-range ECUs.

The asymptotic bound on memory use is constrained by the
size of the precedence graph. Each graph requires N CAN IDs,
and 8 bytes of data to be stored. The maps from CAN IDs to
byte max and min thresholds require |C|×8 bytes, where |C|
is the number of unique CAN IDs. In our experiments, and in
most real-world use cases [9], |C| ≪ N . Thus, the worst-case
memory use of this approach is O(N).

In addition to memory usage, CAN bus security is con-
strained by runtime. Using the graph kernel requires iterating
through the list of CAN IDs one time. It counts unique edges
using a std::unordered_set<tuple<int, int>>,
which has O(1) access time. It finds the maximum degree
using an unordered map to count CAN ID occurrences, then
iterates through the map again to find the largest value. In
the worst case, each can ID was unique, and this process
would require 2N steps. Thus, the asymptotic upper bound
is also linear at O(N). In wall-clock time, we found that
processing the CAN streams using the G-IDCS graph kernel
and analyzing the bytes of potentially malicious messages
from 10,000 graphs took a total of 0.1109s, and 0.0229s
respectively. In real-time, it took 1,079s for the CAN bus to
have enough activity to build 10,000 graphs. Thus, we can
conclusively say our approach works faster than real time.

VI. RELATED WORK

Automotive Security encompasses far more than just CAN
security. In addition to CAN, vehicles use local interconnec-
tion networks, media oriented system transport, and automo-
tive ethernet [4], not to mention the connections to external
USB and bluetooth devices. Automotive ethernet, though not
yet widely adopted, has many proposed security measures. For
example, the higher throughput afforded by its protocol allows
for easier encryption [46], [22] than CAN. It also allows for
more memory intensive solutions such as convolutional neural
network-based IDS [15].

CAN IDS can largely be broken into four classifications:
signal-, physical-, frequency-, or payload-based [42]. Our
approach falls under the payload- and frequency-based cate-
gories of this taxonomy. Payload-based techniques process the
data section analyze the signals being sent by various ECUs
without explicitly decoding them. CANET [11], for example,
uses a multi-LSTM architecture to process the payloads of
CAN messages from specific IDs using unsupervised learning.
Supervised learning approaches like [17], [38] have also shown
great promise in this field, though we are primarily interested
in unsupervised anomaly detection. Prior work [39] trains
several one-class classifiers to find the hyperspheres that de-
scribe the normal distribution of bytes generated by each CAN
ID. Other approaches use more traditional ML approaches
such as ARIMA [40] or hidden Markov models [26] to fit
CAN message distributions. The byte analysis of our approach

loosely fits into this category, though it is not as advanced as
some of these techniques.

Frequency-based approaches find anomalies in message
arrival times [21], or in message ordering [25]. Works like
G-IDCS [33] and Islam et al. [13] use message arrival order
to form precedence graphs.

VII. CONCLUSION

There is great potential for future work in implementing
this system on a real-world vehicle. Filtering CAN messages
before they are allowed onto the bus using simple thresholding
rules and by analyzing them in the context of the precedence
graph appears to be a sufficient method of threat mitigation.
Additionally, with expert knowledge, and insight into the
meanings of CAN messages, expected ranges of bytes in CAN
messages could be defined explicitly and used for even better
message-level anomaly detection.

In this work, we evaluated IDS approaches for the CAN bus
on individual CAN messages. We found that kernel models
have deceptively high metrics when evaluated at the batch
level; when evaluated on a per-message basis, their precision
drops below an acceptable level. By ensembling G-IDCS with
a simple byte threshold anomaly detector, we were able to
improve its precision and recall to a point where it could
be feasible for real-world use. We demonstrated that this
approach requires very little compute or memory and could
be implemented in a real-world vehicle.
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