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ABSTRACT

Anomaly-based intrusion detection aims to learn the normal be-
haviors of a system and detect activity that deviates from it. One of
the best ways to represent the behavior of a computer network is
through provenance graphs: dynamic networks of entity interac-
tions over time. When provenance graphs deviate from their normal
behaviors, it could be indicative of a malicious actor attempting to
compromise the network. However, efficiently characterizing the
normal behavior of large temporal graphs is challenging. To do this,
we propose EDGETORRENT, an end-to-end anomaly-based intrusion
detection system for provenance graph analysis. EDGETORRENT
leverages a novel high-performance message passing neural net-
work for graph embedding over a stream of edges to capture both
temporal and topological changes in the system. These embeddings
are then processed by a novel adversarially trained sequence an-
alyzer that alerts when a series of graph embeddings changes in
an unexpected way. EDGETORRENT preserves temporal ordering
during message passing, and its streaming-focused design allows
users to conduct out-of-core inference on billion-edge graphs, faster
than real-time. We show that our method outperforms state-of-
the-art graph-kernel approaches on several host monitoring data
sets; notably, it is the first intrusion detection system to perfectly
classify the StreamSpot data set. Additionally, we show it is the
best-performing method on a real-world, billion-edge data set en-
compassing 11 days of benign and attack data.
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1 INTRODUCTION

Provenance graph analysis has become an increasingly popular way
of host monitoring for advanced persistent threats. Because these
data structures capture not just individual events, but how those
events flow to other entities in a system, they are the logical choice
for auditing a compromise [30], defining threat signatures [37, 41,
44,56, 66], and, more recently, as intrusion detection systems [11, 18,
29, 40]. It has been argued that provenance graphs are the ideal data
structure for system monitoring because intrusions often manifest
as unexpected interactions between entities on hosts and within
networks [19]. However, quantifying an abnormal interaction is a
non-trivial problem.

One approach to this is time-sensitive graph sketching, also
called a graph-kernel. This technique aims to find a function that
maps a graph at a certain point in time to a vector, called a graph
sketch. If two graph sketches are similar, it implies that the graphs
used to generate them are also similar. This approach is employed
by UN1cORN([18] and STREAMSPOT [40] in a streaming setting. They
read a list of edges for a given provenance graph and use new edges
to update the sketch vector over time. This is accomplished by
representing each node through a function of its local neighborhood,
then aggregating these node representations to produce a full graph
sketch. This evolving graph sketch is periodically saved, and the
sequence of sketches is used for cluster analysis. Normal behavior
is now defined as graph sketches that fit into clusters of previously
observed benign sketches.

Compared to other temporal graph embedding approaches [54,
62], streaming graph-kernel techniques are the most realistic for
real-time detection. Because these methods are specifically opti-
mized for a streaming setting, they are suitable to handle the high
volumes of data prevalent in this domain. Furthermore, the series of
graph sketches they produce can be analyzed as a sequence rather
than as singular data points, which provides deeper insight into
the evolving state of the system and enables the detection of tem-
poral anomalies. Unlike snapshotting techniques [11, 61], where
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graph representations through time are isolated from each other
and analyzed independently, graph sketches represent the state of
the graph from the beginning of time to the present. They do not
partition the graph into discrete chunks for analysis; they consider
the way new events change the complete structure.

Current state-of-the-art graph-kernel approaches use a hash
function to generate node representations. The list of nodes and
edges representing a given node’s neighborhood is hashed, and
these hashes are aggregated to generate sketches. Unfortunately,
use of a hash function make the sketch vectors sensitive to minor
perturbations and also less semantically expressive. These issues
make temporal anomaly detection difficult, as the series of sketches
fluctuates to different points in the embedding space even as the
graph remains in a similar state over time. The sketches would
be more amenable to advanced sequence analysis if the trajectory
of sketches moved smoothly until a consequential state change
occurred. Another shortcoming of the prior works is their reliance
on clustering for anomaly detection. While it is impressive that
non-parametric models can extract as much information from these
methods as they do, we will show that using more advanced models
for anomaly detection enables the detection of more varied attack
types across a broader domain of provenance graphs.

To address these shortcomings, we propose EDGETORRENT, a
continuous-time approach to streaming temporal graph represen-
tations for intrusion detection. Like [18] and [40] we employ the
graph-kernel technique during the sketching phase. However, rather
than relying on a hash function, we propose a novel streaming im-
plementation of a message passing neural network (MPNN) to
generate node embeddings. Prior works avoided MPNNs due to the
intractable size of provenance graphs [9, 11, 37, 41, 45]. Those that
do use MPNNSs either use them on smaller subgraphs [61, 67] or are
untested on real-world graphs with billions of edges [25, 36]. De-
spite this, MPNNs have a unique advantage: they are a weak form of
the WL-isomorphism test [63]. This means they have the expressive
power to describe graph isomorphisms. While the graph sketching
prior works also represent weak forms of this test, they differ in
that their representations are not continuous due to the hashing
function. By using an MPNN, our method produces smooth transi-
tions between graph states over time, more amenable to powerful
series analysis models.

As we will show, on simpler data sets, the MPNN-generated
sketches of EDGETORRENT fall into clear, separable clusters. How-
ever, on larger, and more complex data, classifying any one data
point inisolation is challenging. Instead, it is critical to view sketches
in terms of their trajectories, as a sequence over time. Identifying
anomalies within a time series is a challenging task, beyond what
a clustering algorithm can handle. So, to capture these complex
dynamics, we devise a novel, adversarially trained, transformer-
based anomaly detection model by extending the work of Fence-
GAN [48]-a framework specifically designed for unsupervised
anomaly detection—for use on sequential data. We show that this
technique outperforms prior works on smaller data sets, and we
demonstrate its utility as an efficient, and precise model on the
billion-edge DARPA Transparent Computing (TC) Engagement 5
data set [27]. This data set consists of approximately 2TB of host
logs spanning 11 days that EDGETORRENT can parse, embed, and
classify over the course of a few hours.
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In summary, this work’s contributions are as follows:

- End-to-end real-time intrusion detection system
We propose a full pipeline, which we call EDGETORRENT, for
real-time anomaly detection capable of ingesting workloads
typical of a real-world setting. We will show that EDGEToR-
RENT outperforms state-of-the-art anomaly-based intrusion
detection systems while running fast enough for use in a
streaming setting.

- Real-time method for streaming MPNN embedding
Though other approaches have used MPNNs, ours is the
first capable of doing so in a streaming setting upon the
complete data of billion-edge graphs. This allows for rich
embeddings that make use of all available data, use message
passing that follows temporal constraints, and do not require
the full graph to be stored in memory. To our knowledge,
our approach is the first model to utilize message passing on
streams of edges.

- Novel sequence outlier detection
We adversarially train a transformer [58] for sequence classi-
fication using the FenceGAN [48] framework, which allows
the model to find a very precise decision boundary between
normal behavior and anomalous behavior. By using a trans-
former for anomaly detection, during inference EDGETOR-
RENT is far more efficient than clustering models and capable
of real-time detection.

The remainder of the paper is organized as follows: Section 2
goes over the necessary background knowledge for this paper. Sec-
tion 3 details our method for streaming graph neural networks.
Section 4 describes how the output of the stream is analyzed for
anomaly detection. Section 5 summarizes the whole pipeline. Sec-
tion 6 provides some theory to motivate the use of a GNN for
provenance graph encoding. Section 7 presents the experiments we
did to evaluate our technique compared to prior works. Section 8
provides a brief overview of related work in this field. Section 9
discusses the limitations of our approach as well as directions for
future work. Finally, Section 10 concludes the paper.

2 BACKGROUND
2.1 Provenance-based intrusion detection

Provenance graphs were first introduced by [30] to better un-
derstand the causes of system compromise. A provenance graph
G = {7V, E} is defined as a set of vertices, ‘V representing system
entities, and directed edges & = {(u,v) | u,0 € V} representing
interactions and causal relations between those entities. Critically,
these edges have times associated with them, as well as types to
distinguish various ways these entities can interact and when they
did. More recently, Han et al. [19] suggested that these graphs could
also be used for preemptive monitoring of a system. They empha-
size that when a system is compromised, there will undoubtedly
be unexpected interactions. If a baseline for how entities within
a system interact is known, we expect malicious interactions to
deviate significantly from what is normal.

One way to measure this is through graph sketching. This ap-
proach aims to stream in the graph in temporal order and maintain
a state vector that changes as new edges and nodes arrive. Formally,
it is defined as a function ®(G, t) which takes as input an ordered
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Step 1: Pretrain Step 2: Graph Sketch

Step 3: Train Anomaly Detector
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Figure 1: Visualization of the full EDGETORRENT pipeline. Steps 1 and 2 are described in Section 3. Steps 3 and 4 are described

in Section 4.

list of all nodes and edges observed in a graph G up to some point in
time, ¢, and produces a vector that expresses its state in some way.
Critically, this is different from time slice-based approaches, which
express a graph’s state during a time window {t, t + §}. Whereas,
the sketch vector represents all interactions that have occurred
since time 0 up to ¢.

While not as fine-grained as node-level approaches to prove-
nance graph analysis [20, 61], graph sketching methods have the
advantage in speed and breadth. As they aim to summarize the
activity of a system in a holistic manner, they are not subject to the
same storage constraints as more fine-grained approaches [70]. In
other words, at the cost of less informative alerts, graph-level alert
systems can analyze more data in real time. We feel this is a fair
trade-off, because although anomalous subgraphs detected by our
system could potentially be analyzed by node-level approaches or
even human experts, it would be very difficult to use a fine-grained
approach on a large data set without some form of filtering or com-
pression. We further discuss possible workarounds and solutions
to this limitation in Section 9.

2.2 Message passing neural networks

Message passing graph neural networks (MPNNs) have been shown
to be powerful in their ability to express complex relationships in
non-Euclidean data [12]. They work by propagating a feature held
by each node to all of its neighbors (sending a message). Next, each
node aggregates the messages it received into a single, new feature.
When this process is repeated k times, information from every
node’s k-hop neighborhood is available in a single vector.

Though they are powerful, MPNNs are still flawed. To fully exe-
cute a forward pass with traditional implementations of these mod-
els, it is necessary to hold the entire graph in memory [31, 59, 63],
or use a sampling strategy that leaves out some data [16]. This is
not feasible for graphs with billions of edges, spanning terabytes of
data. For provenance graphs specifically, the graph will constantly
grow as time passes [19] so approaches that use traditional MPNNs
such as [25, 36] will struggle to continue running over time. Addi-
tionally, there are no temporal constraints on traditional message
passing. If a node would have only had a certain message at time ¢,
but it has edges that occurred at ¢ — §, there is no way to enforce
that the message is not passed anachronistically to those earlier
neighbors. We argue that it is more useful for destination nodes
to receive messages about their neighbors’ present state in time;
passing messages from future neighbors only adds noise to their
representations.

To our knowledge, there does not exist a framework to conduct
message passing on streaming data, nor is there an existing method
to temporally constrain the messages passed between nodes. To fill
these gaps, we present ours.

2.3 Generative Adversarial Networks for
Anomaly Detection

Generative Adversarial Networks (GANs) were first introduced
by Goodfellow et al. [15]. They consist of two neural networks
trained in parallel: a discriminator and a generator. The discrimina-
tor is optimized to determine if a particular data point was sampled
from the distribution of real data points, or if it was artificially
generated by the generator. They are most often applied to image
generation [23, 26, 53], but they have also been used for novel drug
discovery [13] and even stenography [69].

The previous approaches take advantage of GANs’ generative
power, but the discriminator is also a useful tool. Prior works have
shown these models to be highly effective at anomaly detection,
especially when anomalous data points are unavailable as training
data [5, 34, 35, 50]. If the generator is optimized to produce samples
on the border of the normal distribution of data points, rather
than inside the space they reside, it becomes an excellent source of
negative samples [48]. As a result, the discriminator learns a very
precise decision boundary of where the input data points lay in
space. Then, when the discriminator processes previously unseen
data points, if they deviate from the normal data distribution, they
are classified as anomalous.

3 STREAMING GRAPH SKETCHES

In this section, we detail our pipeline to convert from provenance
graphs to a series of vectors representing the graph’s state as new
nodes and edges are streamed in. This section correlates to Steps 1
and 2 from Figure 1. First, we train an MPNN for node represen-
tation on a subset of the available graph data in a self-supervised
manner; in this work, we use link prediction. Then, when the MPNN
is ready to conduct inference, we stream in a list of edges in the
temporal order in which they were observed and process them
with our streaming MPNN method. This results in a series of graph
sketches characterizing the graph’s state at a given point in time,
and how that state changes as new nodes and edges appear.

The characteristic equation for graph convolutional networks is

HO = U(AH(H>W(¢»>) )
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where A is the normalized adjacency matrix, W is a trainable pa-
rameter, H() is a matrix of activations at layer ¢, and o(-) is any
non-linear activation.

Another way to understand this is on the per-node level. Let hz(,f)
be the row in H(*) corresponding to node v € V. Then Equation 1
is equivalent to the following, solved for each row of HO):

h(f—l)
) _ ZMEN(U) u (2)
h —ol ===~ W 2
i O-( IN ()] @

where N(v) = {u | (u,0) € &}. In the first layer, HO = X
the nodes’ features. However, the function is trivially extended to
include edge features as well by defining the first layer as

(1) ZuEN(v) XU”X(H,D) (1)
hl} = —_—W 3
"( NG ¥

where || denotes the concatenation operator, and Xy, ;) is the feature
associated with edge (u, v).

Equations 1 and 2 vary slightly between specific MPNN im-
plementations, particularly with respect to the aggregation func-
tion [16, 59, 63] (the fraction in Equation 2), but in general, these
methods all follow the above formulae. Nodes propagate a message
to their neighbors, and those messages are aggregated in some
fashion into a single vector.

3.1 Training

Our method for streaming convolutions is purely an efficient method
for inference. Thus, we must first train the model on some subset
of the data. This correlates to Step 1 of Figure 1. This training must
be inductive so future new nodes can be embedded effectively. For
our experiments, we randomly sampled time windows from the
graph that were small enough to fit into memory and optimized
the model for link prediction. This aims to minimize

L = —log(sim(hy, hy)) —log(1 — sim(hy,hy))

sim(hy, hy) = o(hlhy) @

for {(u,v) € &} where & C & is the sampled snapshot, and
{(u,v’") ¢ E} are randomly sampled non-edges.

3.2 High-performance Inference

Now that the model is ready for inference, we move to Step 2 of the
pipeline shown in Figure 1. In this work, we introduce the notion
of streaming convolutions. These can be thought of as incremental
updates to each node embedding that is affected by the arrival of
a new edge. These embeddings are periodically aggregated to cal-
culate the graph sketch at that point in time. Here, we present an
efficient way to continually update this value with as little overhead
as possible.

Node Embedding.
Suppose a node v € V has a new inbound edge added to it, (©,v).

Given the intermediate layer activations of node u, {h,(lo) e h,SL_ 1 h
and the number of neighbors of v, ¢,, we can update the intermedi-

ate layer hz(,f) of v as follows:
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for neighbors of v, {uy, ..., uc, }. That is, this approach simply adds
one additional neighbor to the list and recalculates the layer.

We can further optimize the above approach by delaying the
computation. Note that the updated node feature is not needed until
an outbound edge is added from this node. To this end, as edges
stream in, we say that the node is in one of two states: source or des-
tination. If a node is in the “source" state, its encoding is static and
is propagated to its neighbors. Otherwise, it is receiving messages
from its neighbors that will change its internal state or encoding.
But it is not necessary to retroactively update any encodings it may
have propagated in the past, as they were representative of that
node’s state at the time they were sent.

The insight is that the encoding of v only needs to be updated
when v undergoes a state transition from destination to source.
Based on this insight, if we use MPNN architectures amenable to
incremental updates, it is sufficient to passively aggregate new edge
data as it comes in, and only perform the matrix multiplication and
inverse non-linearity functions when they are needed. For example,
if the aggregation function is mean, as in Equation 2, let H, denote
the set of all messages sent to node v before an outbound edge is
observed. To fully update h,, it is assumed that all intermediate
activations from 0 < ¢ < L are sent during message passing, much
like in a Jumping Knowledge Network [64]. Intermediate features
of source nodes connecting to v are then added together forming
partial node embedding hz([) = Zh“’)e?{u h(©). We continue to
accumulate new edge data until v transitions from destination to
source, at which point we calculate h;([) with only minor updates
to Equation 5. In the numerator, h,(f_l) becomes hz([_l), and the
denominator becomes ¢, + |Hp|. This same principle can be applied
to other various aggregation functions such as pooling, but not to
models with non-invertible aggregation functions, such as GIN [63].

This state-transition approach to message passing can be thought
of as a special kind of edge between nodes: a temporal edge, rep-
resenting the same entity at different points in time as shown in
Figure 2. This enforces the constraint that message passing only
flows forward through time while avoiding the memory restrictions



EDGETORRENT: Real-time Temporal Graph Representations for Intrusion Detection

that come from storing so many extra nodes. Juxtapose this with
traditional MPNNSs, which ignore time, and propagate anachronous
messages. In prior works, the future state of a node’s neighbor af-
fects its encoding during the present, something that is undesirable
when attempting to summarize a graph at a particular point in time.

Node Aggregation.

To convert from individual node embeddings to full graph embed-
dings, we compute a temporally weighted average of each node’s
embedding after some number of edges are ingested (i.e., the sketch
size |S[). Note that, for soundness, when the weighted average is
calculated, it is necessary to update the partial node embeddings for
any nodes still in the destination state. The weighted average is the
sum of each node embedding weighted with a forgetting parameter
ekt where t, is the period of time since node v was last seen in
any interaction, and k is a hyperparameter. Let t denote the 1 X |V|
vector of these times for all nodes.

The naive way to implement this is with a simple matrix mul-
tiplication: z = ﬁHT e_kt, where H denotes the final activation.
However, this presents two major problems. First, as the graph is
streamed for longer periods of time, H will eventually become so
large that it is prohibitively expensive to fully load it into memory.
Second, using a simple average will gradually reduce the signal
generated by new or active nodes and lower the overall average,
due to the size of the graph and the presence of long-term inactive
nodes.

To solve the first problem, we note that once the average has
been calculated in full for a given set of nodes, only nodes that
were updated afterward will change it. Other unchanged nodes will
simply decay. With a slight abuse of notation, let the superscript n
denote a particular variable’s value when sketch n was created. For
example, z" denotes the nth sketch, hl! denotes v’s final activation
when sketch n was created, and so on. Then,

) n,—k(t1+5) . n+1,,—kt?!
ntl ZleUhl.e i +Zj€Chj e J

@ = OT+1C] @

where U and C represent the sets of unchanged and changed node
embeddings, respectively, and § represents how much time has
passed since z" was calculated.

To avoid extraneous memory use, we aim to represent this equa-
tion only in terms of the changed nodes, and the previous sketch
z". To do this, consider the definition of z"

1 n
2t —— Z he 3)
n 0
V™| veYyn
If we rearrange the equation as
-kt _ —k?
|(V”|z" _ Z h?e j = Z h:le i (9)
jeC ieU
and multiply both sides by the decay parameter e %% we find

Dtk E) < O jpmgn N k) (1o
ieU jeC
may replace the first term in the numerator of Equation 7. In other
words, all unchanged embeddings that contributed to the previous
sketch simply decay in signal strength, and changed nodes are
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recalculated and added back in. Thus, we can update the graph
sketch using only the nodes that were updated rather than the
entire graph, which significantly reduces the memory overhead.

We used the python shelve module [2] to implement this process
and ensure only nodes that are being actively updated are cached
in memory. The remaining unchanged nodes are stored on the disc
in a GDBM database [52]. After each graph sketch is calculated,
any updated nodes are flushed back to the disc. The set of changed
nodes C from Equations 7 and 10 is simply the cache of edited nodes
already in memory, managed by shelve.

To solve the second problem, we change the denominator in
(n+1)
Equation 7 to }}; ekt Again, we wish to calculate this value

using only the updated values present in the database cache. We
can again take advantage of the fact that for all the unchanged
nodes, their contribution to the denominator is decayed by a fixed
amount. Thus, the denominator is calculated as

dn — Z e—kt? = Z dln

1 1
dn+1 — e*k& Z d,n + Z d;—l+1 "
v et (11)
= e—k5(d" - d;’) + > dr
ieC jeC

With these optimizations in place, it is possible to stream in
data faster than real-time to build these vectors and analyze their
changes. The dynamics of these graph sketches, as we will show,
hold enough information to detect anomalous activity.

4 ADVERSARIAL ANOMALY DETECTION

In this section, we describe how EDGETORRENT uses the embeddings
from Section 3 for anomaly detection. We will first detail the archi-
tecture of the generator and discriminator models, then describe
the objective functions these models are trained with. This section
correlates with Steps 3 and 4 of the pipeline shown in Figure 1. In
Step 3 of the pipeline, we train a GAN in the manner described
by [48] using EDGETORRENT sketches as input data. Then, in Step 4,
the discriminator is used as an anomaly detector on new EDGETOR-
RENT sketches; if the discriminator finds a sketch sequence has a
high probability of being generated, it is said to be anomalous.

4.1 Model Architecture

We implement the anomaly detection model as a generative ad-
versarial network (GAN) [15]. These models work by training two
models in tandem: a generator and a discriminator. The genera-
tor takes random noise, Z as input and attempts to transform it
into vectors X emulating those in the input data distribution. The
discriminator takes real data samples, X, and the output of the
generator as its inputs then classifies them as real or synthetic.

The generator is implemented as a recurrent neural network
that takes one vector of noise and processes it into a sequence of
synthetic graph sketches. Mathematically, the generator function
is defined as
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Figure 3: The two components of the anomaly detection model. The generator takes noise as input and runs it through a
multi-layer perceptron (MLP) and a recurrent neural network (RNN) to simulate a sequence of graph sketches. The discriminator
takes a sequence as input, and using a self-attention network, determines the likelihood that the sequence was generated, or

real.

G(Z;06) = %ollx1||.--I1%N
Xn,hy = RNN (Xp-1, hn-1) (12)
%0,hg = RNN(0(Wg,Z +b),0)

where || is the concatenation operator, and o is a non-linearity
function. The RNN function denotes any generic recurrent neu-
ral network; in this work, we use an LSTM [22]. This process is
illustrated in Figure 3a. Note that unlike prior works using GANs
for sequence generation such as [34, 35, 50] we only supply the
generator with a single noise data point. This is following the work
of [18] which aims to identify anomalous state changes between
graph sketches. By supplying a single latent vector, we encourage
the generator to learn the way sketches are likely to change over
time, given a single random starting position.

The discriminator is implemented as a self-attention network,
in a very similar manner to a transformer encoder [58]. It takes
a sequence of vectors as input, adds a CLS token as introduced
by [14] for classification, and passes this series into a transformer
encoder block. This process is illustrated in Figure 3b. For a more
detailed description of this process, we direct the reader to [58].

4.2 Objective Functions

In a traditional GAN, the discriminator and generator are optimized
over the minimax game,

m(i}n mgx V(D,G) =Expy(x) [log D(x)]

+Egp, [ log(1 — D(G(2))]

where G and D are the generator and discriminator models, py is
the distribution of the input data set, and p; is the distribution of
noise the generator uses as input [15]. Put another way, the loss
functions of the generator and discriminator L and Lp are

(13)

N
L6 =37 2, log(1 - D(G(z) (19
N
Lo=-5 ) |10g D) +1og1- DG G| @9

where Z = {z1, ..., zy'} is sampled from p, and X = {x1, ..., xN'} are
real samples from the data set: in this case, a sequence of graph
sketches.

This method is very effective at training generators to produce
realistic-looking samples, however, for anomaly detection, it must
be slightly altered.

Our method takes inspiration from the work of FenceGAN [48]
and modifies it for use on sequential data. In this method, the min-
imax game is changed such that the generator produces samples
right on the decision boundary of the discriminator, rather than
inside the data distribution. In this way, the generator is trained to
produce synthetic anomalies, and the discriminator learns a very
precise boundary constraining normal behavior. This is accom-
plished by changing Equation 14 to

Lc=Lg, +BLg, (16)

where L, denotes encirclement loss, L, denotes dispersion loss,
and f is a hyperparameter. These two values are defined as

N
L, = 5 . log (|~ D(G(z))
i=1

1
T LN =Gz [0]]l2

where a € (0,1) and g = ﬁ Zﬁl G(z;)[0].

The encirclement loss ensures that the generator is producing
samples that are on the periphery of p; rather than within it. This
ensures the generator is creating samples more similar to anomalies
than real data, but not so anomalous that they are implausible. The
dispersion loss optimizes the generator to maximize the standard
deviation of its samples. This ensures that not only are samples
confusing to the discriminator, but they are also varied. Because the
random noise only affects the first generated graph sketch, and the
remaining sketches are deterministic, we only evaluate the standard
deviation of the embeddings for the first generated graph sketch.

The discriminator’s loss function is also changed slightly. Instead
of prioritizing its ability to discern between real and generated sam-
ples equally, the discriminator is biased such that it weights under-
standing the real samples as more important. This is because while
anomalous samples can be near-infinitely varied, we work under
the assumption that we have a close to complete understanding of
the benign activities of a network. By weighting benign samples as
more important to identify, the discriminator better learns where
the distribution of normal activity ends. It is less focused on learn-
ing what an anomalous sample looks like, and more focused on
learning what they do not look like. Thus, Equation 15 is now

Lg,
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where y € (0,1) is a hyperparameter.

4.3 Anomaly Detection

After the full GAN model has been trained, EDGETORRENT assigns
threat scores by calculating the likelihood that a new data point
was generated. This is of course the output of the discriminator. Be-
cause the discriminator was optimized to learn a very tight decision
boundary around the benign sequences of graph sketches it was
trained with, if a new sequence of sketches is thought to have been
generated, it is likely outside of the normal data distribution, and
therefore anomalous. Thus, Step 4 of Figure 1 is to pass a sequence
of sketches to the discriminator which will assign that sequence
an anomaly score. If that score is above a certain threshold, the
sequence is classified as anomalous.

5 SYSTEM IMPLEMENTATION

Putting it all together, we will briefly detail a running example
of the EdgeTorrent pipeline. In this example, we assume that the
MPNN and GAN models have been trained in the manner described
in Sections 3 and 4, and simply show the model in action.

f100) ‘fz(hu(l))lfa(hu(z))

1 2 3
ey hv() hv() hv()

1
0 2 3 0 2) 3 = h® @ e
h® [ h®@ [ h® x| h® | h® | h® Ty e | h@ e Ly v

u —» v

Figure 4: Incremental update as a new edge is streamed in

The system will read logged events from a buffer such that each
edge is formatted as <u,0,ux,vx,edge> where u and v are unique
identifiers for system entities, ux and vy are node features associated
with entities u and v (usually the type of entity), and edge is the
relation type between those two entities. Optionally, an additional
ts timestamp input may be added if the user wants to use this
quantity as the t7 variable in Equations 10 and 11, otherwise, the
timestamp is the count of events. Each logged event is equivalent
to an edge in the provenance graph. For each edge that is read
in, the embedding of v as well as vy is passed to u to update its
embedding, as shown in Figure 4. Every |S| edges processed, the
weighted average of every node’s embedding is stored.
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Figure 5: The full EdgeTorrent Pipeline

From here, as is shown in Figure 5, the sequence of stored edges
is passed to the trained discriminator module which will output an
anomaly score. We will show through experimentation that using
as input sequences spanning entire temporal graphs (§ 7.1), fixed
time spans (§ 7.2), and fixed sequence lengths (§ 7.3) are all effective
ways to process these embeddings.
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Figure 6: G; is an provenance graph showing remote execu-
tion of a malicious process followed by exfiltration. G; is an
provenance graph showing a benign user uploading data to
a web server.

6 MOTIVATING EXAMPLE

Graph kernel approaches have been shown to be excellent for cap-
turing the semantics of provenance graphs in prior works. The two
that we will compare EDGETORRENT to in this work, STREAMSPOT [40]
and UNICORN [18], both justify their success by showing that their
approach is a form of the Weisfeiler-Lehman Isomorphism (WL)
test [33], and can thus differentiate between graph states. In the
prior works, they achieve this using different hashing algorithms
that summarize nodes’ local neighborhoods. Similarly, the findings
of Xu et al. [63] prove that GNNs are a weak form of the WL test.
This means that two graphs having the same node embeddings
after a pass through a GNN is a necessary (but not sufficient) con-
dition to show that they are isomorphic. Therefore, as in prior
works on graph kernels, every graph sketch produced with our
method represents a set of unique possible states for the graph to
be in. However, our approach produces graph sketches with more
semantic information than prior works.

To better illustrate this, consider the example shown in Figure 6.
Nodes are labeled as processes (P), files (F), and network events (N).
There are two simplified provenance graphs: G; shows a malicious
process started remotely, exfiltrating data, and G2 shows a benign
process started by the user, uploading data to a web server. The table
shows how these graphs would be represented by STREAMSPOT,
which only considers first-order relations. Clearly, the distinction
between the two is minor. Our approach, as well as UNICORN, both
consider higher-order relations and would capture the important
distinction between the two graphs: that one has the pathP — P —
N, and the otherhas N — P — N. As our method optimizes for link
prediction, if a pathlike N — P — N is unexpected, we expect each
node in that path to have embeddings that are orthogonal. When the
embeddings in the graph are averaged, assuming perfect encoding,
the sum of the nodes in the abnormal path will have a maximal angle,
and create fluctuations in multiple dimensions of the embedding,
producing a very strong signal in the aggregated graph sketch.
Likewise, an expected path will consist of parallel embeddings
whose average will have a low vector basis, thus producing a smaller
signal. UNICORN, on the other hand, uses a hashing procedure to
represent these small differences. So not only is it unclear if a
perturbation this small would create a strong enough signal to
create an alert, but a similarly small but benign change between Gy
and G, would create a signal of equal magnitude.

While both our approach and the aforementioned prior works
can capture approximations of graph isomorphisms and temporal
patterns such as bursts of activity, the prior works are both limited
in how they can express minor graph differences. Due to the hashing
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algorithm used to represent node activity, minor differences in
graphs could result in major changes in graph sketches, regardless
of the importance of these changes. Our method ensures that major
changes in sketches only occur when a graph deviates significantly
from an expected pattern. The use of a hashing algorithm makes
these two methods insensitive to the magnitude of change in graph
structure. As our results will show in Section 7, it makes these
methods more susceptible to false positives.

7 EVALUATION

To evaluate the effectiveness of our process, we applied it to several
provenance graph datasets and compared it to other provenance-
based intrusion detection systems. We evaluate EDGETORRENT on
host-level provenance graphs, network-level graphs, and a real-
world dataset containing host and network activity. In each ex-
periment, we evaluate EDGETORRENT s ability to precisely detect
anomalous graphs given the generated sketch sequences. There are
relatively few existing approaches to graph sketch generation and
analysis. Many existing approaches for temporal graph analysis are
largely not designed for use in a streaming setting [20, 60, 61, 67] or
are not designed for graph classification [11, 29]. In our literature
review, we identified only two that were comparable to our method:
STREAMSPOT [40] and UNICORN [18]. Both methods use a hashing
algorithm to generate graph sketches.

We will show that EDGETORRENT’s approach using MPNN em-
beddings processed with a GAN outperforms other techniques for
anomalous graph detection. Additionally, we show that our method
has comparable run times to the state-of-the-art techniques we
compare it to and depending on the implementation settings is
even faster. Specific hyperparameter details for each experiment
can be found in Table 7 in the supplemental material.

7.1 Simplistic Host Data

The StreamSpot dataset [40] consists of 600 host log files split into
6 categories of activity, each containing 100 graphs. 5 of these
categories are benign behavior (checking email, playing a video
game, etc.) and one is the trace of a drive-by-download attack.
Because these activities are so well isolated, the results on this
dataset are not indicative of how any given IDS would perform in
the wild. Nonetheless, it is a popular benchmarking dataset for these
types of systems and acts as a proof-of-concept for our technique.

Table 1: StreamSpot dataset metadata

|G| Avg|V| Avgl|E|

Benign 500 8,300 173,000
Attack 100 8,900 28,400
All 600 8,400 149,000

As with all datasets we test on, for node and edge features, we
use a one-hot representation of their types. These two features are
concatenated together to represent the messages passed from source
to destination nodes, as defined in Equation 3. There are 8 types
of nodes and 26 relation types. Table 1 contains more information
about the metadata of this dataset. For all models, we use 128-
dimensional vectors for graph sketches and a decay rate of k = 0.02.
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To evaluate the model, we perform 4-fold validation, as is done
by prior works, where 25 graphs are held out from each benign
group for testing along with all malicious graphs. On this small
dataset, the model quickly converges, requiring only 10 epochs to
train. The only inputs to the GAN are sketch sequences built from
the benign graphs in the training sets. An additional 25 graphs are
held out for validation. These graphs are also used to select the
optimal cutoff for classification: the highest anomaly score given to
a benign graph is used as the threshold. Any graph scoring higher
than this is classified as anomalous. The results of this experiment
are shown in Table 2.

In addition to the two graph-kernel methods, we compare EDGETOR-
RENT to two other popular IDSs: threaTrace [61] and PROV-GEM [25].
ThreaTrace is a node-level anomaly detection system but was
adapted by the authors for full anomalous graph detection on this
dataset using the number of anomalous nodes present in the graph
to classify it. PROV-GEM is a supervised IDS that is explicitly given
a subset of anomalous graphs to learn to classify.

Table 2: Comparison to prior works on the StreamSpot
dataset.

Pr. Re. Acc. F1
STREAMSPOT 0.7700 0.7400 0.8400 0.7500
UNICORN 0.9800 0.9300  0.9600 0.9400
threaTrace 0.9802 0.9960  0.9920 0.9881
PROV-GEM 1.0000 0.9400  0.9700 0.9900

EDGETORRENT, |S| = 2000 0.8829  0.9722  0.9337  0.9243
EDGETORRENT, |S| = 200 1.0000 1.0000 1.0000 1.0000

The STREAMSPOT model uses the final form of the graph sketch
vector to represent the whole graph, e.g., each graph is represented
by a single vector. UNICORN samples the graph sketch as it changes
over time and analyzes each sequence in terms of the clusters it
forms and the state transitions between those clusters. However,
due to the complexity of building a separate clustering model for
each benign graph, its runtime is heavily constrained by the number
of snapshots. As such, in the original work, they used a sketch
size |S| of one sketch per 2,000 events. However, this results in
certain graphs being represented by fewer than 10 vectors, which
is difficult to build a model from. In a good-faith effort to replicate
their experiment, we also use a sketch size of 2,000, however, we
also run an experiment with |S| = 200. This provides a more fine-
grained view of the evolving graph through time and helps to
combat the claim made by [61] that graph kernel methods cannot
detect fine-grained anomalies.

It is evident from these tests that EDGETORRENT is the best per-
forming method, capable of perfectly classifying this dataset. This
is despite the fact that it is completely unsupervised, and due to
the method we use to determine the classification threshold, it is
using less data to train than the other methods. We note that our
approach even outperforms the supervised approach PROV-GEM,
and the node-level approach threaTrace. We attribute this to our
method’s consideration of time as an important variable. The latter
two methods view the graphs as monolithic structures and ignore
the order in which edges appear. Often, to differentiate between a
drive-by download attack and a regular downloaded file, for exam-
ple, the order in which bursts of edges appear is more telling than
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Figure 7: PCA decompositions of the three graph kernel algorithms’ embeddings of the UNSW-NB15 dataset. Blue marks
indicate sketches from a benign graph. Red marks indicate sketches from a malicious graph.

the edges themselves. This is reflected in our model’s perfect recall
scores, compared to PROV-GEM’s lower scores.

However, as previously stated, this is a simplistic dataset, and our
inference model has far more parameters than those we compare
it to. It could be argued the GAN model is simply overfitting on
simple data. For this reason, we turn to more complex datasets for
better evaluation.

7.2 Network Traffic Dataset

The UNSW-NB15 dataset contains web traffic between computers
on the University of New South Wales network [46]. It is a com-
bination of real benign activity, and simulated attacks over the
course of four days-though activity was only recorded for about
8 hours per day. To convert it to a graph, we view hosts as nodes,
and connections between them as attributed edges. We split the
data into 10-minute increments and build separate graphs for each
time span.

Unique to this dataset is its edge-centric nature. As seen in the
metadata in Table 3, there are very few unique IP addresses, with
only 46 unique hosts across the entire dataset. This presents a
very different kind of problem. Often in provenance graph analy-
sis, the limiting factor is the explosion of new nodes representing
ephemeral activity like temporary file creation, or short-lived pro-
cesses. With this dataset, there are very few nodes, but each has
an incredibly high degree. For traditional MPNNs this would be a
problem, as all edges must be processed at once, but for our method,
as well as the other streaming graph kernel methods, this makes
computation easier as there are fewer nodes whose embeddings
need to be stored. Also unique to this dataset is the data imbalance
as a majority of activity is malicious. Data imbalance in anomaly
detection datasets is common, but normally a majority of the activ-
ity is benign. This presents a challenge for training, due to a the
lack of benign activity for these models to learn from. In summary,
this is a challenging dataset for any model, and we feel a significant
step up in difficulty from the StreamSpot dataset.

In addition to the connectivity information, the data contains a
wealth of information about each individual edge. Prior works [28,
38] use these edge features on their own to train anomaly detection
models on the edge level, but this ignores the valuable topological
data. As we will show, with minimal data beyond topological infor-
mation, it is still possible to build a powerful anomaly detector. We
extract the top 15 source and destination ports, as well as a token

for “other", and use their Cartesian product as the edge feature.
Additionally, we tokenize the network prefix from each IP address
to use as node features. In full, this results in 7 classes of nodes, and
256 classes of edges.

Table 3: UNSW-NB15 dataset Metadata

|Gl Avg|V| AvglE|

Benign 61 26 14,600
Attack 79 43 20,525
All 140 36 17,963

Before evaluating the anomaly detectors, it is illustrative to sim-
ply analyze the raw embeddings produced by the various models.
Figure 7 shows the PCA decomposition of sketches generated by
each method. More obscure decompositions do not necessarily
mean the embeddings are less separable, the data may be too com-
plicated to project into lower dimensions. But if data points are
well separated in 2D space, it is fair to assume it is at least as sep-
arable in the original embedding space. From the figures, we can
see that even without further processing, the sketches produced
by EDGETORRENT are almost linearly separable in 2D space. By
using a GCN rather than a hashing method, the sketches produced
have more meaning. Normal activity falls into several tight clusters,
while abnormal activity spans a completely different space, well
partitioned from the benign sketches. Additionally, careful exami-
nation shows that sketches belonging to the same series move in
smooth lines, starting at one end of clusters, and gradually drifting
away in smooth lines. We attribute this to the fact that the GCN
function used to embed the nodes is differentiable, so as new edges
are added, graph sketches change gradually, unlike embeddings
from hash-based algorithms.

STREAMSPOT also produces several tight clusters of benign ac-
tivity, while sketches for abnormal periods are scattered through
the embedding space. However, we note that there is a great deal
of overlap; the clusters are not as well-centered. UNICORN’s decom-
position is far more scattered with no clear separation. This may
be a result of the different sketching approaches followed by these
two techniques: UN1cORN hashes all activity that has occurred on a
single node, producing more unique hashes, and StreamSpot caps
the number of events per node to a set number (in our experiments
100) before generating a new node representation. However, the
UNIcorN method incorporates the state transition between clusters
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as well as simple cluster membership into its classification strat-
egy, so viewing the embeddings is less telling of how the inference
model will perform.

Table 4: Comparison to prior works on the UNSW-NB15
dataset.

Precision Recall ~ Accuracy F1 Score

STREAMSPOT 0.9629 0.9797 0.9466 0.9711
UNICORN 0.8254 1.0000 0.8573 0.9041
EDGETORRENT 0.9991 0.9996 0.9987 0.9993

Table 4 reports the results of experiments on these methods. The
results reported are the average of 5-fold validation tests. All models
are trained on 10 hours of clean data with no anomalous activity,
with 2 hours of clean data held out for validation, then evaluated
on approximately 22 hours of malicious and benign activity. The
GAN is trained for 100 epochs.

EDGETORRENT is the best performing model in every respect
but recall. UN1cornN had perfect recall, but it was at the expense
of a low precision score. Even with the threshold for alerting set
very high, it was plagued with false positives. However, we feel
that the F1 score is the best way to evaluate the balance of true
and false positives and score these models. Using this measure,
we can say that EDGETORRENT struck the best balance between
the two. The next best scoring method was STREAMSpoOT. This is
surprising, given that UNICORN outperforms STREAMSPOT in other
tasks, but we attribute this to the low number of nodes. While
UNICORN produces a unique hash for each sequence of edges a
node receives, STREAMSPOT caps the number of edges to a user-
specified value and hashes each collection separately. This means
that in datasets where there are few nodes, each with high degree,
STREAMSPOT's sketches will be composed of more self-similar node
embeddings than UNICORN’s, as UNICORN’s node embeddings are
constantly changing randomly with each new hash; STREAMSPOT’s
and our own move through space more incrementally.

These results support our trepidation toward hash-based graph
kernel methods. If individual node embeddings change in a smoother
manner, the sketches built from those node embeddings will too.
This produces better sequences for analysis. Finally, by upgrading
from simple cluster analysis to a more advanced GAN model, there
is the potential to capture more complex temporal patterns. This
is evident by EDGETORRENT’s ability to improve both in precision,
limiting false positives, and also recall, as it can detect abnormal
patterns that are more complex than simple point anomalies or
abnormal state transitions.

7.3 Large Endpoint Dataset

To demonstrate EDGETORRENT’s usefulness in a real-world system,
the final experiment is conducted on the DARPA Transparent Com-
puting (TC) Engagement 5 dataset. This dataset consists of 11 days
of activity across several host machines collected by multiple teams
for analysis [27]. Because this data was generated in a real-world
setting, not every dataset was clean enough to be useful for training
or analysis. As such, we analyze the data collected by 3 teams that
provided the data with the fewest discrepancies: CADETS, FiveDi-
rections, and TRACE. The teams captured activity from 1 FreeBSD
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host, 3 Windows 7 hosts, and 3 Ubuntu hosts, respectively. To our
knowledge, this work is the first to implement a graph kernel-based
IDS on this dataset, so these results may serve as a benchmark for
future works.

In our experiments, nodes may have the following types:

Processes, Threads, Units (a group of related threads, specific
to TRACE), Files, Temporary Files, DLLs (specific to Windows ma-
chines), Named Pipes, Registry Keys, Local network activity, Exter-
nal network activity, Special network activity, Sockets, and “other"
when the type cannot be inferred from the logs.

We categorize files as normal, temporary, or DLLs using hints
from their path variables. Similarly, we categorize network events
as local if they take place in the local IP range, and special if the
address ends with . 255 or starts with @xff in the case of IPv6.

Table 5: TC Engagement 5 dataset Metadata

Hosts Sequences  Avg |V| Avg | 8|

Benign 52 329,000 4,370,000

CADETS 1 Attack 4 377,000 5,120,000
All 58 333,000 4,430,000

Benign 155 713,000 4,540,000

FiveDirections 3 Attack 7 728,000 5,120,000
All 162 713,000 4,560,000

Benign 244 1,600,000 4,830,000

TRACE 3 Attack 3 1,680,000 5,120,000
All 247 1,600,000 4,830,000

Because the data collection is continuous over the course of the
engagement, there is no obvious way to separate out individual
graphs. Prior work [18], in their analysis of similar data, separated
graphs by connected components. But this requires knowledge of
what the graph will do in the future-knowledge we cannot pre-
sume to have if this were applied as a real-world system. Instead,
we consider all activity that occurs on a single host over the course
of one day as one graph. Furthermore, because no attacks take
place outside of business hours for this dataset, and there is min-
imal activity at night, the graphs start at 7 Am and end at 7 pm.
Sketches are generated for all edges that take place during this
period. Due to the unwieldy size of these graphs, we set the sketch
size to 20,000 edges for CADETS and FiveDirections, and 40,000 for
TRACE. The sketches are then broken into sequences of length 256
(approximately 4 hours) for analysis. More details of the datasets
are available in Table 5

Table 6: Evaluation of graph kernel methods on different
TA1 monitoring systems on the TC Engagement 5 dataset

TA1 Pr. Re. Acc. F1

CADETS  0.5066 0.3000 0.4417 0.2883
STREAMSPOT 5D 0.3740 0.4000 0.6513 0.2410
TRACE 0.3525 0.2667 0.8109  0.2511

CADETS  0.1818 0.5000 0.7027 0.2667
UNICORN 5D 0.0745 1.0000  0.1031 0.1386
TRACE 0.0219 1.0000  0.0290 0.0441

CADETS 0.7111  0.8000 0.7242  0.6576
EDGETORRENT 5D 0.4944  0.7429 0.7710  0.5896
TRACE 0.6467  0.4000  0.7739  0.4356
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Figure 8: The effect of anomalous activity on graph sketches,
and anomaly scores. Regions highlighted in red represent
periods where the system was under attack.

Table 6 shows the scores attained by each technique during
evaluation. The results shown are the average of 5-fold validation
on benign sketch sequences, where all malicious sequences are
reserved for testing after 100 epochs. We find that even though
this task is difficult for all graph-kernel methods, EDGETORRENT
outperforms the prior works by quite a large margin. It even attains
a perfect score on 2 of CADETS’ 5 folds. However, its performance
is very contingent on the benign data it trains with, suggesting
the benign activity space was far larger than what the models had
to train with. The prior works were similarly hindered. Where
UNICORN again struggles to find a high enough threshold to avoid
false alarms, STREAMSPOT skews the opposite way, marking most
sequences as benign.

It is difficult to properly label this dataset because 1) the ground
truth document reports only the time and IP address of the attack
and 2) it is unclear when certain attacks end. For example, the
attack that occurs on 5/16 on FiveDirections host 1 establishes a C2
connection that remains active throughout the remainder of the
day, and through the night. It is unclear if this is disconnected the
following day or not, and this may account for the lower precision
score on this dataset. Likewise, the attack on CADETS on 5/10
assumes the attacker has stolen credentials. They simply SSH to the
machine and use a password they already know. It is unclear if this is
truly behavior that should be labeled as anomalous and may account
for some of the false negatives EDGETORRENT experiences on certain
folds while getting perfect scores on others. Nonetheless, if any
attack was made on a host, we noted the time period and labeled
any sketches that were made during those times as anomalous.

With results like these, and especially on real-world data sets, it
is often more useful to analyze specific instances where the model
correctly and incorrectly identified anomalous activity. Figure 8
shows the graph sketch vector, and anomaly score respectively for
two hosts, FiveDirections-1 and FiveDirections-2, as they undergo
very similar attacks. In both figures, the first red highlighted region
is the initial compromise, where the Drakon APT attack injects mal-
ware into a Firefox process. In the second red region, the malware
activates and begins communicating with a C2 server.

In both instances, the anomalous network activity produces
strong signals, while the initial compromise does not. This is likely
because the provenance graphs in the benign data set form a very
thorough picture of how, and with whom each machine communi-
cates. But, as pointed out by [57], individual browsing activity is
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highly varied, making it difficult to thoroughly summarize what is
“normal”, so the malicious download goes unnoticed.

Additionally, in both cases, the C2 connection is not severed for
several hours, which makes it difficult to decide how to label this
region. But we note that the graph sketches in Figure 8a, after the
initial perturbation when the C2 connection was opened, remain
in their perturbed state until the end of the day. This lines up with
the periodic heartbeats it was sending to the C2 server after it was
compromised. The anomaly score for the other host, similarly stays
high for the rest of the day, for the same reason.

These results are encouraging. We have already shown that with
clean datasets, EDGETORRENT is highly effective. We feel that the
drop in performance here is due largely to the imprecise labels, and
the large scope of benign activities, much of which we could not
train with.

7.4 Efficiency Analysis

To further support our claims that EDGETORRENT is capable of real-
time analysis of provenance data, we perform an experiment to
measure its runtime performance. Our analysis is conducted on a
single Intel Xeon E5-2690 v4 CPU [1] processing 1 million edges at
varying levels of granularity. These results are shown in Figure 9.
For comparison, we also plot the results reported by UNICORN of
their speed tests using the best settings.

The graph being processed in Figure 9 is a TRACE graph, one of
the most edge-dense provenance graphs available. The one-million
edges were recorded over the course of 27 real-time minutes. For
clarity, we also plot the rate at which new edges are observed in
real-time. As is evident, our method, as well as UNICORN fall well
under the required speed for real-time analysis, with our method
slightly slower than UNICORN, but not so slow that it cannot handle
real-time processing with quite a large margin for error.

Because a larger sketch size, |S|, entails fewer calculations of
Equation 7 and fewer write operations, when |S| is set to 10,000,
EDGETORRENT runs slightly faster, taking about 500us per-edge
compared to 600us when |S| = 500. We also note that our imple-
mentation of EDGETORRENT uses pure Python, and could be further
optimized with C ++; we leave this as a topic for future work.
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Figure 9: A comparison of runtimes for graph embedding us-
ing EDGETORRENT at varying levels of granularity compared
to UNICORN. Note that the data provided for UNICORN only
includes times for |E] < 0.95e6
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Figure 10: Comparison of real-world edge rates to the pro-
cessing rates of EDGETORRENT and UNICORN

Additionally, we obtained real-world endpoint event volumes
from hundreds of thousands of monitored servers, workstations,
laptops, and network devices within a large multinational technol-
ogy corporation. This data showed that on average, their endpoint
monitoring systems receive 1,000 events per hour with a maxi-
mum of 1.8 million per hour. We show these rates compared to
the graph kernels’ sketch rates in Figure 10, as well as the edge
rate for TRACE from the previous figure. As is evident from the
figure, both sketching methods operate far faster than an average
workload would require. Furthermore, when the real-world system
experiences high traffic, both methods are still quite capable of
sketching the edges in real-time. In fact, the TRACE dataset, which
we have already shown can be sketched in real time, has a higher
rate of activity than what is observed in the real world. For these
reasons, we feel confident in our assessment that EDGETORRENT is
capable of real-time graph sketching.

Generating graph sketches is only the first part of the pipeline,
however. So, we also provide a runtime analysis of how long gen-
erating sketches, and performing inference takes for each graph
kernel method tested. Though UNICORN does provide a more effi-
cient way of generating graph sketches, its method of performing
inference is inefficient. Because it generates a new clustering model
for each training graph, its time for inference grows in proportion
to the number of training samples it was given.

Figure 11 shows the full picture of how long each pipeline takes
to fully conduct inference when a new sketch appears. Though
UNICORN is moderately faster at sketching compared to EDGETOR-
RENT, after it has seen 500 training samples, it runs slower than
EDGETORRENT. This is a realistic number, as we see in the very first
experiment. Thus, we can say with confidence that our method
is at least as efficient as the state-of-the-art when dealing with a
realistic quantity of data. However, we concede, our method is still
slower than STREAMSPOT. But given the incredible improvement
between STREAMSPOT and EDGETORRENT, we feel this is an accept-
able trade-off, especially given that typical edge rates are so much
slower than all of these methods’ processing time.

8 RELATED WORK

Supervised & Signature-based Approaches Prior works [10,
44, 66] use subgraph matching techniques to identify known ma-
licious signatures within provenance graphs. Prior works [37, 41]
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Figure 11: Time to run the full pipeline to ingest and analyze
a single new sketch with various graph kernel models. Bars
denoted U—+ represent UNICORN with * trained models.

use expert-designed patterns with semantic meaning to condense
large provenance graphs into smaller, easier to analyze ones, which
they represent with neighborhood embedding. Supervised learning
approaches are also popular, where rather than known signatures,
techniques such as [4, 25] use known malicious traces within the
system to train on. Unfortunately, these works all require expert
information, or labeled data to train. Furthermore, these approaches
are not robust to zero-day vulnerabilities, which will, by definition,
not be a part of the training sets of malicious data these models
learn from. To circumvent these issues, it is necessary to use an
anomaly-based intrusion detection system.

Anomaly-based approaches Anomaly detection in sequences
has long been studied, both from a pure statistical approach [17,
39, 47, 65] and through the lens of machine learning [49, 68]. Prior
works [24] and [55] both use GANSs to analyze network and host
events, respectively. But neither incorporate the graph structure
present in both. Earlier works on provenance graph anomaly detec-
tion [7, 8] use counts of individual events to determine the graphs’
maliciousness; [42] characterizes system entities by their ego-nets.
However, all these works do not look beyond first-order entity
relations if at all.

To bridge this gap, ShadeWatcher [67] uses first-order relations
to generate knowledge graph embeddings of entity relationships,
then enriches these embeddings by further processing them with
a graph neural network. However, this method is not inductive,
meaning as new entities appear, new knowledge graph embeddings
for them and any nodes they interacted with must be generated
. Similarly, ProvDetector [60] and prior work [11] use skip-gram
encodings of graph paths to generate path and node representa-
tions, respectively. But again, these techniques are not inductive
and must be retrained as unseen nodes appear. ThreaTrace [61]
identifies anomalous nodes individually by using an ensemble of
GraphSAGE models to predict node types given observed edges on
subgraphs of the provenance graph. Like UNICORN, as more train-
ing data becomes available, it requires more models for inference.
Similarly, S1GL [20] encodes nodes embedded with word2vec [43]
with Graph LSTMs [51] and attempts to reconstruct their original
embeddings. High reconstruction loss indicates likely malicious
processes. However, their approach is not suitable for enterprise-
wide monitoring. The authors specify that it is meant to monitor
the well-defined graphs generated during software installations.
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None of these prior methods considered time. Midas [9] views
streams of edges and learns to identify anomalous bursts of activity
over time, but is highly specific in what it can detect. Euler [29] uses
MPNNSs on temporal snapshots and passes the node embeddings
through RNNs for link prediction on authentication events; how-
ever, its temporal embeddings are not continuous. Graph-kernel
methods [18, 40] analyze representations of the graph in its entirety
as it changes over time and identify anomalous graphs as a whole.
Time is represented continuously, rather than through arbitrary
snapshots. Additionally, these methods are built with streaming in
mind, so they are optimized for both speed and precision.

9 DISCUSSION

Limitations of EDGETORRENT. As with any graph-kernel method
for IDS, it is difficult to attribute alerts to individual events. Rather,
EDGETORRENT detects anomalous periods of time. While this has
value, for example, to analyze the data provenience from a single
target source node, it is often less granular than a security analyst
may want. However, as the sketch size is variable, this problem can
be somewhat alleviated if one wishes to isolate the most anomalous
sketch. In this way, the problem can be narrowed down to the |S|
events that occurred during that period of time. We feel that this is
less a limitation of the embedding method, and more a limitation
of the experiments we conducted. Rather than compressing each
node embedding into a single graph sketch, it is very likely that
tracking node embeddings on their own will produce trajectories
similar to those produced by the graph sketches. However, on larger
graphs, this produces a great deal of data, generating |V|x t X d
dimensional matrices. If instead we could identify a small subset of
nodes worthy of monitoring and store just their changing embed-
dings, this approach would be more feasible, but this is a non-trivial
problem, so we intend to explore it in future works.

Also true of any anomaly-based IDS, this method assumes that
it has enough benign data to learn what normal activity looks like.
This assumption may not always be the case, and in the real world,
generally is not. However, the cost of retraining the model when
new data becomes available is low. Regardless, these models are
susceptible to higher rates of false positives than signature-based
systems but require no anomalous data to train. Though this trade-
off is not unique to this work, it is still something worth consider-
ing. We also note that on the large endpoint dataset, EDGETORRENT
performed poorly when trying to detect activity on individual ma-
chines, but excelled at detecting anomalous network activity. It
may be that the broad scope of the activities we monitored resulted
in too much noise for the model to properly learn the distribution
of benign activities. As [57] notes, in anomaly-based IDS, models
tend to perform better, and have results that are easier to explain
when more minimal feature sets are used. Rebuilding the graphs
and omitting all but host-focused or network-focused nodes may
provide better results.

Another limitation is the inability to efficiently process longer
streams of graph sketches. Due to the requirement of transformers
to generate an n X n matrix for an input of length n, the memory
requirements increase rapidly with growing sequence length. We
avoid this problem in this work by breaking the sketch sequences
into smaller sub-sequences for processing, but this presents prob-
lems for detecting long-term activities within the system. Ideally,
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the global view taken by the sketch generation portion of EDGETOR-
RENT will carry this information forward through time, but this is a
limitation. One solution to this is making sketch sizes larger, so as to
integrate longer periods of time, but this comes at the cost of some
information loss. Alternatively, efficient transformer architectures
could be used that are designed for long sequences [6, 32].

In spite of these limitations, we have shown that EDGETORRENT
outperforms the prior works by a significant margin. Because it in-
corporates both a continuous graph sketching function and a more
powerful anomaly detection model, it is able to detect malicious
activity that the prior works were unable to, while also alerting on
fewer false positives. At the same time, EDGETORRENT remains fast
enough to stream in real time.

Future work. Investigating if better alert attribution can be ex-
tracted from EDGETORRENT’s output is worth further research. We
feel that using existing transformer attribution strategies [3, 21]
to identify the most relevant graph sketches, it may be possible
to further extract the nodes that contribute most heavily to those
alerts. Additionally, we would like to explore the effect of using a
different model for sketch analysis. It is possible a simpler machine
learning approach such as [5, 34, 49, 68] or even a simple statistical
model such as [17, 39, 47, 65] could yield similar or better results
during anomaly detection. Lastly, using a more advanced method
to convert from node embeddings to graph sketches is worthy of
further exploration. We use a simple weighted average based on
time decay, but using methods such as attention instead of temporal
decay, or LSTM aggregation as proposed by [16] may produce more
expressive graph sketches.

10 CONCLUSION

In this work, we presented a novel method of encoding a provenance
graph in real-time. The EDGETORRENT pipeline trains an MPNN on
a small subset of a much larger graph, then efficiently streams in a
large edge list to generate high-quality graph sketches. These graph
sketches are then analyzed with an adversarially trained sequence
anomaly detector to determine if they were part of a normal or
anomalous graph. This work shows that it is possible to embed
provenance graphs in real-time with continuous graph sketches,
rather than hash-based ones, making them less sensitive to minor
perturbations, while retaining the ability to detect unusual activity.
We demonstrated through several experiments that this method out-
performs state-of-the-art graph-kernel methods for anomaly-based
intrusion detection and runs fast enough for real-time monitoring
in a realistic setting.
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