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Abstract—Traditional signature-based perimeter defenses are
not sufficient for defending enterprise computer networks against
modern-day cyber threats. Advanced Persistent Threats can eas-
ily evade known techniques and signatures. Behavioral analytics
have been proposed as a way to move beyond signatures to
detect stealthy and sophisticated threat actors better. However,
current implementations of these analytics are either too granular
to generate meaningful alerts, or too strict, relying on user-
generated patterns to explicitly describe malicious behaviors.
In this work, we introduce a new system, NETHAWK, which
represents cyber activity within an enterprise network as an
attributed graph. It then uses this graph to conduct behavioral
anomaly detection to identify structural and temporal graph
anomalies. We further leverage the graph structure to generate
high-fidelity and complete incident reports on malicious activity
based on connected-component analysis. We apply our techniques
to two open-source datasets: the DARPA OpTC dataset, and
the LANL Comprehensive Multi-Source Cyber Security Events
dataset. We detect malicious activity with high accuracy while
maintaining minimal CPU and memory utilization. We also
demonstrate that our approach generates meaningful, easy-to-
understand alerts that align with the human descriptions of the
attacks we analyze.

I. INTRODUCTION

Existing cyber security tools utilized by enterprise defenders
suffer from two major challenges: they have difficulty de-
tecting novel attacks, and the alerts they generate are unin-
formative. Signature-based intrusion detection systems (IDSs)
are popular in the academic field [1], [2], [3], [4], as well
as industry [5], [6], [7], but they can only detect signatures
that experts explicitly specify. On the other hand, anomaly-
based intrusion detection systems do not have this weakness.
They can detect zero-day attacks but at the cost of higher false
alarms [8]. When these systems do have true positives, they
are often difficult to interpret, either due to the high volume of
uncorrelated alerts [9], [10] or because the alerts are coarse-
grained, labeling large swaths of logs over fixed-length periods
of time [11], [12], [13].

Signature-based IDSs detect signatures of known bad
events, such as malicious file hashes, domain names, IP ad-
dresses, etc, or predefined behaviors of an attacker. While these
methods can provide a high-fidelity indicator of compromise,
they are inherently flawed as they will never be able to detect a
sophisticated adversary who will not reuse known attacks. For
example, the high profile SolarWinds hack was not only based
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on new malware, but on malware embedded in previously
trusted software [14]. Many advanced attack campaigns will
perform so-called living-off-the-land attacks, utilizing known
and trusted software native to the environment to accomplish
their mission, making them very challenging to detect [15].
For an IDS to be resilient against advanced persistent threats
(APTs), it must detect zero-day attacks.

The second challenge comes from the fact that security
tools often generate a high volume of weak indicators of
comprise. This requires a human analyst to then “connect-
the-dots” to understand the full impact of a security event.
This challenge is exacerbated by the fact that many security
alerts are false positives [16], [17], [18], [19] leading to so-
called “alert fatigue” of the cyber analysts. Differentiating true
positives from false positives, while simultaneously stitching
together the true positive alerts into a security incident requires
a significant level of expertise, as well as time and effort.
Attacks can succeed just because defenders do not properly
understand their full scope quickly enough to respond. For an
IDS to be usable, it is crucial that its alerts are not only precise
but understandable to security analysts.

In this work, we introduce our system, NETHAWK, which
accurately and scalably models user and system activity
within enterprise-grade networks. Our system is anomaly-
based, meaning it is not susceptible to the first challenge; it
does not require expensive creation or maintenance of rules,
patterns, or signatures of attacks. Additionally, the Cyber
Activity Graph data structure at the heart of our system
provides alerts in the form of malicious subgraphs. This means
that unlike prior graph-based IDSs [1], [2], [9], [11], [12], [20],
[21], NETHAWK aggregates alerts together into explainable
clusters of malicious activity, creating highly informative,
and comprehensive security alerts. NETHAWK operates at the
enterprise level, as opposed to individual hosts, and therefore
it can stitch together related events that span hosts and users
in the environment.

We evaluate our system on the OpTC dataset [22] generated
during the DARPA Transparent Computing program, and the
Comprehensive Multi-Source Cyber Security Events dataset
[23] from the Los Alamos National Labs (LANL) enterprise
network. The former dataset is a simulated enterprise-grade
network including roughly 600 hosts, 600 users, five days of
benign activity, and three days of malicious red team attack



Fig. 1: NETHAWK Detection and Monitoring System Architecture

campaigns. The latter dataset is a real-world dataset captured
from the internal LANL network, also including labels from
red team activity. Our system was able to learn the benign
activity and identify the malicious attack campaigns with 90%
precision and 98% recall in OpTC, and 72% precision and
93% recall in LANL. Because alerts are structured as temporal
subgraphs of all user and system activity, they are highly
explainable. We will show how the alerts from the NETHAWK
system can be used to accurately reconstruct the path of an
attacker as they pivot from host to host, and how the subgraph
alerts generated by our system agree, and even expand upon
those reported by the redteams.

II. BACKGROUND

The majority of off-the-shelf security tools and analytics
focus on traditional row or columnar data representation and
analysis. Representing and analyzing the data in this way
imposes limitations on the types of analysis that can be
performed [24]. Some prior works design purpose-built query
systems entirely for cybersecurity analysis [3], [25]. Many
other works [12], [26], [27], [28] have shown that graph
representations of enterprise activities provide significant al-
gorithmic advantages over traditional database representations
for a variety of cybersecurity-relevant tasks. For this reason,
in this work, we represent and process cybersecurity data as
a graph. A graph G = (V, E) is a collection of vertices,
or nodes V that represent discrete entities, and edges E =
{(u, v) | u, v ∈ V} that represent relationships between them.
In this work, systems and users are represented by nodes, and
interactions between them are represented by edges.

III. NETHAWK SYSTEM

In this section, we will discuss the details of our detection
and monitoring system which we call NETHAWK. We will
start with a high-level overview of the components of the
system, followed by a deep dive of each element.

A. System Overview

Figure 1 shows the workflow illustrating how the system
operates. Each component is summarized below.

I. Edge Ingestors parse cybersecurity log data and convert
them into a set of time series edges in the Cyber Activity
Graph. This requires custom parsers for each log type in use.
The edge ingestors either pull from an existing data store, such
as a Security Information and Events Management System

(SIEM) (e.g., Splunk [29], or ELK [30]), or from a streaming
data feed (e.g., Apache Kafka [31]), and convert the raw logs
into a set of node and/or edge updates. These updates are then
applied to the Cyber Activity Graph.

II. Cyber Activity Graph is the primary data structure of
our system. It contains real-time graph information pertaining
to how users and systems interact across an enterprise network.
The graph holds information that is both structural in nature
(e.g., who is talking to whom?), and behavioral (e.g., what
are they saying?). The graph edges and features are further at-
tributed with timestamps of the first observation of a particular
behavior on each edge. The graph analyzer anomaly detection
algorithm uses this fine-grained time series information per
entity in the graph.

III. Graph Analyzer processes a snapshot of the Cyber
Activity Graph and assigns an anomaly score to all edges in
the graph using our anomaly detection algorithm.

IV. Anomaly Graph receives anomalous edges from the
Graph Analyzer and will commit a subset of those edges to
the Anomaly Graph data structure for inspection by a security
analyst when the Anomaly Score exceeds a certain threshold.

B. Edge Ingestors

The Cyber Activity Graph is only as expressive as the data
on which it is generated. As we are focused on granular,
user-driven behaviors and activity, it is necessary that we
have an equally granular data source. As a result, we focus
on analyzing host-based telemetry. Fortunately, this type of
information is already generated by many enterprise solutions
such as Endpoint Detection and Response (EDR) solutions
[32], antivirus solutions (AV), Sysmon [33], or even native
solutions provided by operating systems, such as Event Logs
in Windows [34], or auditd in Linux [35]. In most of
these cases, information such as which user is logged in,
and what actions they are performing on a particular system
will be logged and optionally forwarded to a centralized
system, such as a SIEM for analysis. The responsibility of the
Edge Ingestors is to pull log data from the SIEM or similar
centralized log source, transform the content into a time series
edge list, and update the Cyber Activity Graph.

C. Cyber Activity Graph

The Cyber Activity Graph is a graph structure G = (V, E)
where V is a set of vertices of type {system, user} and E is a
set of edges of type {file, process, network}. All nodes and



edges are attributed with a timestamp corresponding to the first
time NETHAWK observed that node or edge. Edges are further
attributed with behavioral features which themselves are also
each associated with a timestamp of the first observation.
Figure 2 provides a diagram representation of the information
captured in the Cyber Activity Graph. Note that all graph
elements are tagged with timestamps.

We consider two kinds of nodes, and three kinds of edges in
our representation of the network. User Nodes are the entities
that correspond to an account, persona, or credential. These
nodes are designed to capture identities within an enterprise
network. System Nodes are the entities that correspond to
systems or services. They are attributed with information such
as an IP address and/or hostname. These nodes are designed
to capture services within an enterprise network.

Edges in the graph represent interactions between users and
systems. A File Edge represents a user interacting with a
file on a system; Process Edges represent a user executing a
process on a system; Network Edges represent a user accessing
a network service on a system. Each of these edge types
has a timestamp for the first time that kind of interaction
was observed, and a unique identifier that categorizes the
relationship. File edges are uniquely identified by the filetype
that was being accessed, process edges are identified by the
process name, and network edges are identified by a port
number if it was non-ephemeral, or a feature for ephemeral
port use. They are also attributed with a direction specifier to
indicate if the user experienced flow activity to or from the
system.

Fig. 2: Cyber Activity Graph Schema

D. Graph Analyzer

The purpose of the Graph Analyzer is to periodically
analyze the Cyber Activity Graph and assign anomaly scores
to edges of interest. The analysis consists of temporal and
structural analysis and a training phase.

Temporal Analysis. The Graph Analyzer is powered by
a custom anomaly detection algorithm which was influenced
by the threat-hunting technique of long-tail analysis. The idea
of long-tail analysis is that the most infrequent events are a
good place to start when looking for potentially malicious
activity. As NETHAWK is a system designed for monitoring
real-time enterprise network data feeds, we relax long-tail
analysis slightly; instead of just focusing on infrequent events,
we focus on new, previously unobserved events.

Equation 1 shows the most basic form of the edge feature
anomaly calculation in our system. This equation is an expo-

nential decay function that returns values between (0, 1] based
on the age of an edge feature f .

A(f) = e
ln(0.5)
t1/2

∗age(f)

= 0.5
age(f)
t1/2

(1)

The age() function is simply the number of time units
that have elapsed between the current time of analysis, and
the first observation of edge feature f . The t1/2 parameter,
represents a concept we call anomaly half-life. This is the
amount of time that must pass for the anomaly score of a
particular edge feature to decrease by half. As the value of t1/2
decreases, the anomaly score of a newly observed event will
decay more quickly. A value of t1/2 that is too low will cause
the system to “forget” about activity too quickly, meaning it
will not properly stitch together related malicious events. A
value that is too high will cause the system to “remember”
activity for too long. This increases the likelihood of unrelated
but anomalous activity being incorrectly associated together,
ultimately resulting in false positives. In our experiments, we
have found a half-life of 6 hours to provide good performance.

Structural Analysis. A common challenge with temporal-
based threat hunting is that there are many new or infrequent
events that occur in large-scale, diverse computing environ-
ments that are not malicious. Because of this, it is not sufficient
to only look at new or infrequent events as this would cause far
too many false positives. To handle this challenge we utilize
the graph structure to reduce the anomaly score of edges that
are unlikely to be malicious based on the neighborhoods of
the nodes involved.

The Neighbor Similarity Scaling technique aims to reduce
the anomaly score of an edge feature based on the similarity
of the anomalous edge feature to other edges that have been
previously observed and are no longer considered anomalous.
In other words, if a new edge is observed between node a and
b, we reduce the anomaly score based on whether that same
activity was observed between nodes (a, b′) where b ≈ b′.
There are many ways to compute node similarity, however,
in this work, we use a simple function based on nodes with
a similar degree in the 1-hop neighborhoods of the nodes
involved in the original edge. Equation 2 shows the similarity
function. The β parameter controls how strict this equation is,
and the D(·) function returns the degree of the node.

sim(a, a′) =

{
true |D(a′)−D(a)|<β∗D(a′)+D(a)

2

false otherwise
(2)

After identifying suitable nodes based on our similarity
function in the 1-hop neighborhood, the anomaly score of
the same feature (e.g. port, process name, etc) is used as a
scaling factor on the original anomaly score s. For each shared
feature f ′ in a similar node, we adjust the anomaly score to be
s = s∗A(f ′). As the values returned by the anomaly function
A(·) are necessarily ≤ 1, this will always result in either no
change or a reduction of the anomaly score s.



It is important to note that we do not want to blindly
apply the neighbor similarity scaling technique for all edges in
the graph. For edges involving low-degree nodes (e.g., users
and their workstations), new activity, despite its similarity
to previously observed activity on other edges, is inherently
interesting. For example, a user logging into their co-worker’s
workstation for the first time may look exactly like how they
log into their own workstation, however, it is still extremely
interesting from a security perspective. Conversely, an edge
involving a node with a high degree, such as a web server
or file server, utilizing that resource for the first time is less
interesting from a security perspective. Therefore, edges are
divided into two groups we call: individual resources and
shared resources.

Intuitively, individual resources are those which are tied to
specific users or services. For these nodes, we do not apply
the neighbor similarity scaling technique to reduce anomaly
scores. On the other hand, shared resources are services that
are used by large groups of users, or even the entire enterprise.
For these nodes, we do apply the neighbor similarity scaling
technique in order to reduce the anomaly score for edges
involving these entities. To separate the two types of entities,
we use a metric based on the mean and standard deviation
of node degrees across the enterprise. Nodes with more than
the average plus one standard deviation number of edges are
labeled as shared resource modes. In the datasets we analyzed,
we found that there was a clear distinction between these two
distributions.

Algorithm 1 Cyber Activity Graph edge scoring routine
1: procedure COMPUTEEDGESCORES(G)
2: for edge ∈ G.edges do
3: scores = []
4: for f ∈ edge.features do
5: s = A(f)
6: if (a or b) ∈ shared resources then
7: s = s ∗ neighborScale(G, a, b, f)
8: scores.push(s)

9: G(edge).scores.push(sum(scores))

The pseudocode for the edge anomaly scoring algorithm can
be seen in Algorithm 1. The input graph G is a snapshot of the
Cyber Activity Graph at a particular point in time. On lines 2
and 4 we are iterating over each feature of each edge in the
graph. We compute the edge anomaly score for the particular
feature on line 5, followed by the neighbor similarity scaling
technique on lines 7 and 8 if either of the nodes are shared
resources. Finally, on line 10 the edge anomaly scores are
summed and added to the list of edge scores stored in the
graph.

Training. Since the edge anomaly algorithm is based on
first observation time, it is necessary that we have a training
window. Otherwise, everything that is new will be identified
as anomalous as soon as the system starts. Additionally, our
goal is not to simply detect new entities within the network, but
rather to detect new behaviors between known entities. To that
end, we build and maintain a data structure that indicates if a

particular node is in training or not. No edges involving nodes
that are in the training phase will be added to the anomaly
graph.

To handle new nodes and nodes that require different
amounts of training time, we have designed an online, per-
node training algorithm. All nodes start in training mode when
they are first observed, with the exception of external IP nodes,
which are inherently untrusted and can generate anomalies
on their first observation. For nodes from internal entities, a
new node is in training until two conditions are met: (1) a
minimum number of observations have been recorded, and (2)
the anomaly score reaches equilibrium. The first condition is
trivial to implement. For the second, we calculate the variance
of the previous N observations and declare that equilibrium
has been met once the variance of the anomaly terms falls
below some threshold, γ. In our experiments, we found a
value of γ = 100 performed well. If this equilibrium has been
achieved, the node is labeled as no longer training and will be
incorporated into the Anomaly Graph if anomalous edges are
identified.

E. Anomaly Graph

The Anomaly Graph is a structure that stores the anomalous
components identified by the Graph Analyzer and presents
them to a human analyst for investigation. At this point in
the algorithm, individual edge anomalies are still relatively
weak indicators of compromise, and a human analyst would
still be required to do a lot of manual inspection in order to
piece together an attack campaign. To address this, we again
develop a technique that utilizes the graph structure to further
weed out false positive events from true malicious activity. We
accomplish this by analyzing the structure of the graph formed
by connecting the anomalous edges and amplifying the most
anomalous graph structures.

In graph theory, connected components are a traditional
way to analyze graph structures, and are defined as subgraphs
in which there is a path that connects each node. We mod-
ify this type of analysis slightly and define our anomalous
connected components as those components that share edges
that are identified as anomalous. Additionally, this part of the
algorithm has the ability to baseline the anomaly score of
edges based on their history of anomaly scores. For edges
that contain an anomaly score history of at least the number of
minimum training samples N , anomalous edges are identified
as those edges with an anomaly score which is τ standard
deviations away from the mean for that particular edge. For
edges that do not have sufficient history, anomalous edges
are simply labeled with the anomaly score as computed at
that time step. This way, the system has a way to baseline
anomalous behavior for particular edges such that they won’t
make their way into the Anomaly Graph if it is typical for a
particular edge.

After identifying the anomalous connected components, we
use the size of the component as a way to further amplify
their signal. The intuition here is that a single edge anomaly
is a relatively weak indicator of malicious activity, however,



as anomalies connect together both structurally via anomalous
connected components, as well as temporally by our time-
based anomaly detection algorithm, they become increasingly
more likely to be malicious. Therefore we use the size of
the connected anomalous component as a force-multiplier
of the anomalous activity. After the anomaly amplification,
we have a threshold based calculation that determines if the
activity should be published to the anomaly graph, ultimately
escalating the activity to a human for investigation.

Algorithm 2 Anomaly Graph Create Routine
1: procedure CREATEANOMALYGRAPH(GR)
2: GA = new Graph()
3: for (a, b) ∈ GR.edges do
4: lastScore = GR(a, b).scores.last
5: mean = mean(GR(a, b).scores)
6: std = std(GR(a, b).scores)
7: if lastScore > mean+ τ ∗ std then
8: δ = lastScore− (mean+ τ ∗ std)
9: GA.addEdge(a, b, score = δ)

10: ccs = connectedComponents(GA)
11: for cc ∈ ccs do
12: score = |cc.nodes| ∗ |cc.edges| ∗ sum(cc.scores)
13: if score > ν then
14: alert(cc)

One full analysis iteration is shown in Algorithm 2. On line
4, the real-time Cyber Activity Graph accesses the output of
computeEdgeScores (Algorithm 1) for each edge. Next, the
edge anomaly scores are analyzed and if the score exceeds a
threshold based on deviation from the mean, the edge is added
to a temporary graph structure (lines 5-9). After all edges
are added to the temporary graph for the current time step,
we apply the connected component anomaly amplification
by scoring entire components of the graph as opposed to
individual edges (lines 10-12). If an anomalous component
exceeds a predefined threshold ν then an alert is raised on the
connected component (line 14).

IV. EVALUATION

We evaluate NETHAWK on two public datasets: OpTC [22]
and the LANL Comprehensive Multi-Source Cyber Security
Events [23]. Table I shows high-level dataset details. The
LANL dataset, as it spans 58 days serves to demonstrate
our approach’s ability to correlate temporally distant events.
The OpTC red team attempted to emulate APT behavior; we
evaluate NETHAWK on this dataset to support our claim that
it can detect APT-like attacks.

The NETHAWK system is developed entirely in Python,
utilizing the highly efficient NetworkX graphing library [36],
in about two thousand lines of code. The NETHAWK system

TABLE I: Evaluation Datasets

OpTC LANL

Duration (Days) 8 58
Attacks (Days) 3 18
Computers 625 17666
Users 627 10941

TABLE II: NETHAWK System Configuration

Parameter Name Variable Value

Anomaly Half-Life t1/2 6
Neighbor Similarity Factor β 0.3
Minimum Training Samples N 24
Training Variance Threshold γ 100
Anomalous Edge Factor τ 5
Anomaly Graph Threshold ν {100, 1,000}

was developed as a single-threaded application. The reported
runtimes in the experiments below are from a single Intel
Xeon E5-2683 CPU core. In all experiments, unless otherwise
specified, the hyperparameters used by NETHAWK are those
delineated in Table II, with the exception of ν, which is set to
100 for the OpTC experiments, and 1,000 for LANL, due to its
larger scale. That these parameters can be reused between such
different datasets illustrates the robustness and applicability of
our model.

A. Accuracy Analysis

1) OpTC: First, we will evaluate the detection accuracy of
our algorithm compared with the state-of-the-art on the OpTC
data. Table III shows the raw metrics each model achieves.
We compare to three popular graph-based IDS approaches, Ar-
gus [10], Euler [9], and Unicorn [12]. The first two approaches
detect anomalies on the edge-level by analyzing a temporal
graph representation of the network, split into discrete (one-
hour) time steps. Unicorn analyzes fixed-length edge lists
representing activity in the network. It classifies periods of
time as malicious or benign but does not differentiate between
benign and malicious regions within each edge list it analyzes.
Because of these different data splits, it is difficult to fairly
compare these methods with ours, which detects anomalies
at the node level. However, as we are primarily interested in
limiting alert fatigue, and producing explainable alarms, we
also compare the methods in terms of how many false alarms
they produce, and how informative the true alarms are.

The first row of Table III shows the scores the models
attained across the full dataset. In the NETHAWK row, this
includes the full 5 days of benign data that offline models
need for training. For Euler and Argus, the metrics are only
from the three attack days, as the benign days were needed
for training. Despite this, NETHAWK attains higher precision
and recall than both of those approaches. Because NETHAWK
classifies nodes individually, it has fewer alarms than edge-
centric methods; of those alarms, they are overwhelmingly
TPs. We report 126 TPs, and 14 FPs during the attack period
of the OpTC data. Compare this to the 1,175 TPs and 2,795
FPs, and the 753 TPs and 840 FPs emitted by Argus and Euler,
respectively. Because the NETHAWK alerts are correlated into
attack graphs, analysts may have an easier time interpreting
them. We explore this in the following subsection. Prior works
only provide isolated edges, devoid of context; of these edge
alerts, the majority of them are FPs for both approaches.



TABLE III: Accuracy results on OpTC Dataset

Data Approach Precision Recall F1

All
NETHAWK 0.9000 0.9800 0.9400
Argus 0.2960 0.9647 0.4530
Euler 0.5273 0.6897 0.5977

Attack Day-1 NETHAWK 0.9200 0.9600 0.9400
Unicorn 0.6000 1.0000 0.7500

Attack Day-2 NETHAWK 0.8600 0.9900 0.9200
Unicorn 0.8000 1.0000 0.8900

Attack Day-3 NETHAWK 1.0000 1.0000 1.0000
Unicorn 0.1400 1.0000 0.2500

For our comparison with Unicorn, we construct host-based
provenance graphs from the OpTC data, similarly as with
NETHAWK. We construct the host graphs for each attack day
and the benign period. The graphs from the 5-day benign
period are used for training the models. We use the same
parameters as Unicorn used for their analysis of the Darpa
TC3 dataset [37].

The Unicorn approach presents several issues. While Uni-
corn could detect all of the attacks (recall was always 1.0), it
suffers from a much higher false positive rate. Additionally,
Unicorn’s system is more aligned with analyzing homoge-
neous data, like enterprise servers, which execute predefined
tasks with little to no deviation. However, the OpTC data is
much more heterogeneous because it consists of users working
on various machines, which can result in much more unstable
and unpredictable behavior. Using these periodic sub-models
for clustering results in less robustness when there are sudden
changes in system behavior, causing the FPR to increase. In
addition, unlike NETHAWK, which produces a comparatively
small anomaly graph based on connected components within
the overall graph, Unicorn does not provide any reconstruction
or temporal attack analysis, causing the analyst to have to
manually determine anomalies within the graph sketches,
which can include thousands of edges.

2) LANL: Next, we analyze the models on the larger, but
more opaque LANL dataset. During analysis, we found that an
individual system always dominated our results, and generated
a large Anomaly Graph component that dwarfed all others.
Upon investigation, we found that this was related to a system
labeled as C15244. This is a shared resource in the computing
environment, which around the time of the red team events
started providing a new service on port 69 (typically associated
with the TFTP protocol) which was utilized by many systems
in the environment. This is highly anomalous and possibly
malicious, however, it does not coincide with any of the
labeled red team events. Therefore, we decided to note the
activity and whitelist the system to best analyze the other
results without the noise added by this individual system. Note
that this interference likely affected the results of the prior
works to which we compare NETHAWK, as we use the results
reported by [10].

Table IV shows the raw scores of each IDS on the LANL

TABLE IV: Accuracy results on the LANL Dataset

Approach Precision Recall F1 TPs FPs

NETHAWK 0.7200 0.9300 0.8116 555 219
Argus 0.2171 0.8269 0.3439 363 1,309
Euler 0.0318 0.8565 0.0613 376 11,464

dataset. Due to memory constraints, we had to omit Unicorn
from the evaluation, as the LANL dataset was too large for it
to process. We again observe that NETHAWK achieves higher
metrics than the prior works. However, as the three models are
classifying different components of the graph, it is important to
consider more than just the raw precision and recall scores. We
must compare these models from the perspective of a security
analyst. Both of the edge-detection works had more false
positives than true positives, while 74% of NETHAWK’s alerts
were true positives. Additionally, the results of NETHAWK are
easier to interpret. The Anomaly Graph contained 555 TPs,
and 219 FPs, and did not include 41 FNs, and 102,822 TNs.
It captured the vast majority of entities involved in the red
team activity, while also remaining highly precise at 72%.

B. Attack Analysis

Next, we will dig into the results on a per-day, per-attack
basis. Because LANL is from a real-world environment, the
data is highly anonymized, which makes a granular interpreta-
tion of the results challenging if not infeasible. Thus, we only
analyze the alerts NETHAWK produced on the OpTC dataset.
We will analyze where our system succeeded, where it failed,
and how it could be improved. Here, we attempt to justify
our claim that the alerts produced by NETHAWK are not only
precise but also explainable.

Attack Day 1. Figure 3 shows the Anomaly Graph for the
activities that were detected during the day-1 attack campaign.
Nodes are colored based on the time when they were aggre-
gated in the Anomaly Graph. The graph was updated three
times throughout the day, as indicated by the three individual
colors. At the center is the compromised user account zleazer.
We observe that zleazer had anomalous activity detected on
their workstation, sysclient0201, in addition to many other
systems in the environment. The C2 communication is clearly
visible as the external IP node in the Anomaly Graph. The
administrator account the attacker pivoted to, as well as the
systems involved in that lateral movement, sysclient0660 and
sysclient0402, are also visible. Despite not having visibility
into the log files for the domain controller, we were able to
detect the large amount of lateral movement that occurred after
the domain controller compromise due to the usage of the
compromised zleazer account.

In addition to this large connected component displayed
in Figure 3, there is also a smaller, 3 node component
that was detected on day-1 (omitted in the figure) that was
counted as a false positive. This component involved a large
amount of new activity between a couple of users in the
system. Despite making its way into the anomaly graph, this



Fig. 3: OpTC Attack Day-1 Fig. 4: OpTC Attack Day-2 Fig. 5: OpTC Attack Day-3

component is easily distinguishable from the malicious activity
as it covers only a small amount of activity. The only false
negative our system incurred involved the compromised user
account hdorka. However, this account was compromised on
the domain controller, and we did not have visibility into this
system.

Attack Day 2. The Anomaly Graph for the activity that
occurred during the day-2 attack campaign is shown in Figure
4. The attack began with the large cloud of connections around
the bantonio user as the result of running the DeathStar
automatic exploitation tool. It is clear that this level of activity
is very noisy, and very obvious when analyzed as a graph.
We can also see the other compromised user accounts of
administrator and sysadmin which were added to the graph
after the domain admin was compromised by the DeathStar
tool. Again the C2 server is easily observable in the graph,
shared between bantonio and the administrator account.

This day introduced the most false positives, and conse-
quently had the lowest precision. This was due largely to the
fact that the bantonio DeathStar process touched so many
unique systems that it inadvertently amplified some activity
that would have never been escalated into the anomaly graph.
These manifest in the graph as weakly connected leaf nodes
around the perimeter of the large bantonio cloud. There is
likely some pruning that we could do to remove some of these
false positives, which we leave to future work.

Attack Day 3. The attack on Day 3 was based on
a malicious update of a well-known text editing program
Notepad++. Two users, dcoombes and bbateman performed
an update that provided attackers a backdoor into their sys-
tem. Once on the system, the attackers interacted with the
local workstations of the compromised users, only performing
some enumeration and local persistence actions. No further
lateral movement or exploitation was performed. Figure 5
shows the full attack graph for day-3. We can see that the
system captured the anomalous and malicious activity between
dcoombes, bbateman, and both of their respective workstations
sysclient0051 and sysclient0351. We can also see the attacker
C2 server at 53.192.68.50, the central hub of the Attack Graph.
All of the other users interacting with the C2 IP address
were not further exploited by the attackers, though we assume
they were compromised, as they were calling back to the C2
infrastructure. Had all of these various accounts not also been
compromised, the activity on this day would have likely been

much more challenging to detect.

C. Scalability

Memory. Figure 6a shows the size of the Cyber Activity
Graph over time as it processes the LANL dataset. Notice
the superlinear growth in the first few hours of the dataset,
tailing off after about 250 hours of system operation. During
the first hours of operation, the system is observing a large
quantity of new activity, which leads to this aggressive growth
in size. After roughly 250 hours, the size of the graph is
relatively static, with only a small upward trend. As shown
in Subfigure 6b total memory consumption follows the same
trend, with a large increase in memory consumption in the
first 250 hours, followed by a slower, sub-linear increase from
that point onward. For the full 58-day graph, the total memory
used reached less than 300 MB, indicating that this technique
could scale to a much larger network.

(a) Graph Size vs Time (b) Memory

Fig. 6: LANL Memory Characteristics

Runtime. Figure 7 shows how long the system took to run
one analysis iteration per every hour of the dataset. In general,
the analysis runtime is short, less than 3 seconds of analysis
per one-hour of real-time data that has elapsed. There is an
initial increase in runtime in the first few days as new activity
is aggregated into the Cyber Activity Graph, and after this
point the runtime only shows a slight trend upwards. This
again indicates that this technique can scale to a much larger
network with ease. We emphasize that at no point does the
time required for computation exceed the amount of wall-clock
time that has passed, meaning our approach is indeed usable
for real-time analysis.

V. LIMITATIONS

a) False Positives: As with other techniques, false pos-
itives tend to be one of the biggest issues in threat detection.
However, NETHAWK effectively tries to quell false positives



Fig. 7: Runtime Analysis

through various techniques, such as the Neighbor Similar-
ity Scaling, and connected component signal amplification.
Nevertheless, it may be beneficial to deploy NETHAWK in
conjunction with a SIEM, such as Elastic, to verify anomalous
edges and lower false positive scores.

b) Slow and Evasive Threat Actors: Threat actors that
act extremely slowly may be more difficult to detect. Since
we must set the anomaly half-life parameter, threat actors
can try to evade detection by acting much more slowly than
expected. While this is possible, it is unlikely, as multiple
actions must be performed when the threat actors log in or
perform malicious activity. Threat actors can also attempt to
model their malicious activity as closely as possible to benign
system activity in order to dodge detection, as their activities
would be less likely to be marked by NETHAWK. In these
cases, as we mentioned earlier, pairing NETHAWK with a
SIEM would aid in detection of evasive threats.

c) Hyperparameter Tuning: In order for NETHAWK
to provide robust results, additional analysis is required to
select optimal hyperparameters for different environments.
This entails the knowledge of the enterprise network and
deployment strategies, which may take some time initially to
setup. Testing would also need to be performed in order to
ensure system robustness. It is important to note that while
it may be nontrivial to correctly choose the hyperparameters,
other approaches, such as signature-based rules, also require
tuning, and in many cases rule modification must be performed
for hundreds, or thousands of different rules.

VI. RELATED WORK

The vast majority of commercial and open-source tools
for enterprise security rely on signature-based detentions.
Snort [5] and Suricata [38] are two popular open-source
IDSs, but they both require rules that define what malicious
activity looks like and thus will always be vulnerable to APT
circumvention. On the other hand, Endpoint Detection and
Response (EDR) systems, such as the open-source OSSEC
[39], run software on hosts and can detect malicious activity
and some behavioral anomalies. Unfortunately, they often lack
the big picture visibility across the full enterprise and are
also highly dependent on signatures. Security Information and
Events Management Systems (SIEMs) such as Splunk [29]
or ELK [30] aim to collect and correlate activity across an
enterprise, however, they are also typically rule-driven when
it comes to detecting malicious activity.

In the academic space, many works model and detect
malicious activity via provenance graphs or causal analysis
of host events as we did. Poirot [1] and Holmes [2] model
attacker behavior as a query graph and search for attacks
on a system via the kernel audit records. RapSheet [21] is
another technique where attacker activity is modeled as a graph
and identified in a host provenance graph. Unlike NETHAWK,
these approaches, as well as many other provenance-based
works [4], [40], [41], [42], focus on a set of pre-defined
attacker behaviors on individual hosts.

Argus [10] is the current state-of-the-art anomaly-based
IDS. They too model the network as a temporal graph, but
their alerts are upon isolated edges, making interpretability
difficult. Link prediction-based systems, in general, suffer
from this issue [9], [43], [44]. The NoDoze system [20] is
similar to our approach. They identify anomalous paths in
host-based provenance graphs to triage alerts and produce
useful alarms, but rely on domain-specific expert knowledge
to generate anomaly scores. Similarly, PrioTracker [45] has a
strong emphasis on temporal features and the rarity of edges
in provenance graphs to generate anomaly scores. While they
also provide explainable attack subgraphs, their approach has
a greater focus on causality analysis, and forensics than live
detection.

By comparison, the NETHAWK system models network-
wide dynamics, as opposed to individual hosts, which al-
lows for the system to provide a more complete account of
malicious activity that spans multiple systems and services
across an enterprise. Finally, due to the compact yet expressive
representation of the Cyber Activity Graph, the NETHAWK
system can monitor large-scale real-world enterprise computer
networks with minimal memory and compute requirements.

VII. CONCLUSION

In this work we introduced NETHAWK, a system for moni-
toring and detecting Advanced Persistent Threats in enterprise
computer networks based entirely on anomalous activity. We
discussed the pitfalls of traditional signature-based approaches,
and how behavioral detection techniques are the key to our
future security. We described the Cyber Activity Graph and
the Anomaly Graph data structures, and our anomaly detection
algorithm based on structural and temporal graph anomalies.
Then, we applied our system to two datasets representing real-
world enterprise computer networks and demonstrated how
NETHAWK can detect sophisticated malicious activity span-
ning multiple users and systems with high precision and recall.
Further, we showed how our system can analyze large-scale
networks with minimal memory and compute requirements.
Importantly, we showed that this approach generates highly
interpretable alerts. By correlating suspicious behavior and
analyzing large connected components of anomalous activity,
we can tell the story of an adversary traversing a system and
can help security analysts end it.
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