
Exploring the Efficacy of Multi-Agent Reinforcement Learning for
Autonomous Cyber Defence: A CAGE Challenge 4 Perspective

Mitchell Kiely1, Metin Ahiskali6, Etienne Borde9, Benjamin Bowman12, David Bowman1, Dirk Van
Bruggen11, KC Cowan6, Prithviraj Dasgupta7, Erich Devendorf8, Ben Edwards2, Alex Fitts11,

Sunny Fugate5, Ryan Gabrys 5, Wayne Gould2, H. Howie Huang12, Jules Jacobs10, Ryan Kerr3,
Isaiah J. King12, Li Li3, Luis Martinez5, Christopher Moir1, Craig Murphy2, Olivia Naish2, Claire

Owens2, Miranda Purchase2, Ahmad Ridley4, Adrian Taylor3, Sara Farmer2, William John
Valentine9, Yiyi Zhang10

1Defence Science and Technology Group (DSTG), Australia.
2Defence Science Technology Laboratory (Dstl), United Kingdom.

3Defence Research and Development Canada (DRDC), Canada.
4National Security Agency (NSA), USA.

5Naval Information Warfare Center (NIWC) Pacific, USA.
6Army Combat Capabilities Development Command (DEVCOM), USA.

7Naval Research Laboratory (NRL), USA.
8Air Force Research Laboratory (AFRL), USA.

9University of Canterbury, New Zealand.
10Cornell University, USA.

11Punch Cyber Analytics, USA.
12Cybermonic, USA.

Abstract

As cyber threats become increasingly automated and sophis-
ticated, novel solutions must be introduced to improve de-
fence of enterprise networks. Deep Reinforcement Learning
(DRL) has demonstrated potential in mitigating these ad-
vanced threats. Single DRL Agents have proven utility toward
execution of autonomous cyber defence. Despite the suc-
cess of employing single DRL Agents, this approach presents
significant limitations, especially regarding scalability within
large enterprise networks. An attractive alternative to the sin-
gle agent approach is the use of Multi-Agent Reinforcement
Learning (MARL). However, developing MARL agents is
costly with few options for examining MARL cyber defence
techniques against adversarial agents. This paper presents a
MARL network security environment, the fourth iteration
of the Cyber Autonomy Gym for Experimentation (CAGE)
challenges. This challenge was specifically designed to test
the efficacy of MARL algorithms in an enterprise network.
Our work aims to evaluate the potential of MARL as a robust
and scalable solution for autonomous network defence.

Code —
https://github.com/cage-challenge/cage-challenge-4

2025, Association for the Advancement of Artificial Intelligence
(www.aaai.org). All rights reserved.
The contents include material subject to ©Crown copyright
(2024), Dstl. This information is licensed under the Open Gov-
ernment Licence v3.0. To view this licence, visit https://www.
nationalarchives.gov.uk/doc/open-government-licence/. Where we
have identified any third party copyright information you will need
to obtain permission from the copyright holders concerned. Any
enquiries regarding this publication should be sent to: centralen-
quiries@dstl.gov.uk or arcd@dstl.gov.uk.

Introduction
Cyber threats are escalating concerns for organisations and
governments as attacks grow in frequency and sophistica-
tion. As the world becomes increasingly interconnected,
these threats are expected to rise (McLean 2024), placing
a significant burden on cyber security administrators tasked
with responding to network incidents. The onslaught of
threats has sparked extensive research into Autonomous Cy-
ber Defence (ACD), which is defined as automated decision-
making agents for cyber systems to mitigate highly complex
cyber attacks (Vyas et al. 2023), to aid human operators in
managing the sheer volume of necessary threat response.

Agents are typically categorised into three groups: red,
green, and blue. In general, red agents are adversarial, blue
agents are allied, and green agents are neutral. Typically, re-
search in this field focuses around adversarial environments,
where an attacking red agent is pitted against a defending
blue agent and either of them must learn the optimal at-
tack or defence strategy (Macas, Wu, and Fuertes 2023).
Deep Reinforcement Learning (DRL), a subfield of Machine
Learning (ML), algorithms has shown potential in employ-
ing these optimal strategies in complex cyber security envi-
ronments (Nguyen and Reddi 2021).

Autonomous DRL agents can learn the optimal sequence
of actions in a scenario with limited prior information (Li
2017). These algorithms have proven highly effective in sin-
gle agent adversarial environments such as Chess (Silver
et al. 2017), Go (Silver et al. 2018), and the real-time multi-
agent adversarial environments such as Starcraft (Vinyals
et al. 2019). These successes have led many to investigate
the potential of DRL in the field of ACD.

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

28907



At its core, DRL can be explained through the concepts of
states, actions, and rewards. At discrete timesteps, an agent
receives an observation based on the state of the environ-
ment. For each observation, the agent selects an action to
enact, resulting in a new state. Based on this new state, the
environment outputs a reward relative to how advantageous
the new state is the the learning agent. Different actions yield
different states and different rewards. Over numerous inter-
actions with the environment, the agent is incentivized to
select actions that yield the greatest reward, implementing a
strategy that maximises the total system reward.

Historically, ACD environments have been single agent
or single adversarial environments, where one blue agent
defends the network against one attacking red agent. Pre-
vious CAGE Challenges (Kiely et al. 2023) have resulted
in highly capable single-agent based autonomous defensive
agents. However, these agents struggle to scale efficiently
when dealing with large enterprise networks common in
real-world scenarios. Moreover, a single agent becomes a
central point of failure for the entire network’s defence.
MARL algorithms can mitigate many of these drawbacks.

By applying MARL to ACD, the defence of a large en-
terprise network can be distributed across individual sub-
nets. Each defensive agent is tasked with defending a sin-
gle subnet, reducing state space while contributing to the
defence of the entire network. This distributed approach is
inherently more robust (Buşoniu, Babuška, and De Schutter
2010), as the failure of an agent to defend a single subnet is
typically less impactful than the agent failing to defend the
entire network. Furthermore, cooperative agents can learn to
maximise their collective reward (Tan 1993) by providing
assistance to other subnets in more critical situations. In the
single agent scenario, the state-action space is larger as it
comprises all subnets. In contrast, for the multi-agent case,
the state-action space can be significantly reduced to include
only those within and between subnets. Despite these bene-
fits, very few environments have been developed to explore
the effectiveness of MARL algorithms for autonomous cy-
ber defence

In this paper, we introduce a novel environment, Cage

Challenge 4 (CC4), which simulates a relatively large
enterprise network. This tool has been employed across
academia, industry and government to examine the effec-
tiveness of multi-agent systems in executing autonomous
cyber operations. The environment acts as a foundational
platform, allowing other researchers and industry experts to
compare and extend existing agents in this specialized field.
Moreover, the environment facilitates the reproducibility of
results for future world implementations.

Related Works
The number of adversarial cyber-security environments ded-
icated to developing defensive blue agents has seen a steady
rise over recent years. These environments encompass a va-
riety of adversarial scenarios designed to foster research into
implementation of autonomous agents for cyber-defence. A
common feature of these environments is the adversarial
1-on-1 set up, where one attacking agent attempts to gain
further network access, and one defending agent protects
the system. To our knowledge, apart from environments us-
ing CybORG, no enterprise-based environments exist where
multiple blue and red actors execute actions simultaneously
on the same network. A summary of existing environments
and their place in this context is provided in Table 1.

We categorise single agent environments as those where
only one red or one blue agent can learn at a time. These en-
vironments are stationary, meaning, nothing within the en-
vironment changes over time except the learning agent. Red
and blue environments are those where one red agent and
one blue agent can learn concurrently. These environments
are non-stationary. Both agents learn and adapt to the ad-
versary’s actions as the training of each agent progresses.
Lastly, n blue or n red environments are those where mul-
tiple blue agents, or multiple red agents can learn simulta-
neously. Within this last category, CybORG stands alone in
being the only code base that supports training of multiple
blue agents.

CC4 extends the CybORG code base to include an envi-
ronment that replicates a large enterprise network, composed
of numerous subnets, where each subnet contains a unique

Environment Red or Blue Red and Blue n blue or n Red
CyGIL (Li, Fayad, and Taylor 2021) ✓
PrimAITE (Dstl 2023) ✓
CSLE (Hammar and Stadler 2022) ✓
Gym-IDS game (Hammar and Stadler 2020) ✓ ✓
CyberBattle Sim (Microsoft Threat Intelligence 2021) ✓
MARLon (Kunz et al. 2022) ✓ ✓
Gym-Threat-defence (Miehling, Rasouli, and Teneketzis 2015) ✓
Gym-Optimal-Intrusion-Response (Hammar and Stadler 2021) ✓
AtMOS (Akbari et al. 2020) ✓
Yawning Titan (Collyer, Andrew, and Hodges 2022) ✓
Farland (Molina-Markham et al. 2021) ✓
CYST (Drašar et al. 2020) ✓
CybORG (Standen et al. 2021) ✓ ✓

Table 1: A list of open-source Autonomous Cyber Defensive environments and which category of agent training they facilitate

28908



defender agent. These autonomous agents range from ad-
vanced reinforcement learning algorithms to simple heuris-
tics, offering flexibility to the user. The only prerequisite for
agents on each subnet is that they must be able to receive
an input and output an action. This challenge offered in-
sights into the nature of the interactions between multiple
blue agents that defend a large enterprise network.

Actions taken by a defender on one subnet may positively
or negatively impact another defender on a different subnet.
This reflects real-world incident response teams which are
composed of numerous individuals, each with their own as-
signed job. Most existing cyber defence environments focus
solely on the capacity of a single agent to defend a network.
This fails to reflect real world scenarios where individuals
typically work together to accomplish a goal.

Given the unique nature of this environment, no stud-
ies have yet explored how multiple autonomous defensive
agents interact to defend the same network. Understanding
these interactions is crucial for future real system deploy-
ments, where the network is too complex for a single agent
to defend. CC4 provides the preliminary environment for in-
dividuals to investigate these interactions. Furthermore, CC4
serves as an initial benchmark for future developers of multi-
ple autonomous agents to measure the effectiveness of their
AI model in a complex cyber security scenario.

CAGE Challenge 4
CAGE Challenge 4 (CC4) is an open-source MARL en-
vironment that facilitates the study of multi-agent au-
tonomous cyber defence. This foundational platform enables
researchers to repeatedly build, initialize, and test multi-
agent AI models across various cyber security scenarios. De-
tailed documentation that outlines the environment’s inner
workings is publicly accessible on the Github page (TTCP
2024). This documentation provides a high-level overview
of the challenge, along with low-level specifics explaining
the classes implemented and functions’ called. Additionally,
a suite of user-friendly tutorials with an interdisciplinary de-
sign are available to assist both cybersecurity and AI experts
in developing and evaluating agents in this environment.

Network Structure
The simulated network for this challenge is designed to
mimic an operational military network. It is divided into
eight individual subnets, each representing either an opera-
tional or ‘back-office’ support capability. A visual represen-
tation of this network can be viewed on the Github reposi-
tory.

Critical services are present on the servers in the subnets:
‘Operational Zone A’ and ‘Operational Zone B’. Both of
these subnets have network links with their respective ‘Re-
stricted Zones’, which are then linked together via the In-
ternet node. This collection of subnets make up the oper-
ational capability of the network and are contained in the
’MISSIONNET’.

The ‘SIMNET’ segment holds the supporting network
functions for the mission. The ‘Contractor Network’ subnet
is connected directly to the Internet node and is not under the

control of the blue defenders in this scenario, instead being
the responsibility of the contracting company. The inclusion
of this subnet helps represent the impact of supply chains on
cyber-security and is the point of origin for the attacker in
this scenario. Due to this separation in control, the remain-
ing military subnets in this section are commonly referred
to and acted upon as one large subnet, ‘HQ Network’. The
internal structure of the HQ segment is made up of the ‘Pub-
lic Access Zone’ subnet, which acts as a boundary between
the Internet node and the independently connected subnets
‘Admin Network’ and ‘Office Network’.

Each subnet in this simulated network contains several
computer systems or hosts. A host can be of type ‘user’
or ’server’. User represents a desktop computer associated
with a green agent while a server represents a server hosting
services green agents connect to. To increase scenario com-
plexity, the number of hosts and servers vary per episode.
All hosts contain services which are used by green agents
producing neutral actions but introduce vectors for red ‘at-
tacker’ agents to exploit allowing access to a host.

Agent Host Allocation
All active agents are linked to one or more hosts by a ses-
sion, which is recorded in the environment. Green agents
are permanently linked to one host and are present on every
user host in the environment. As the generation of hosts is
dynamic, this can result in a varying number of green agents
between episodes.

Blue and red agents however, are allocated up to one per
subnet. A blue agent has a session on all the hosts in its sub-
net to allow it to act on them, and these links do not change
over the course of the episode. The Contractor Network sub-
net stands out as the only subnet that has red presence but not
blue. The red agent in the Contractor Network is the only ac-
tive red agent in the environment at the start of the episode,
with one privileged session. It explores the subnet, gaining
more sessions on different hosts until it discovers another
subnet. When the red agent succeeds at getting a session in
a different subnet, the red agent allocated to that subnet is
activated and given ownership of the newly created session.
This is how the red presence expands without a singular red
agent being stretched too thin over a larger network.

Reward
The rewards for CC4 are scaled to reflect mission priori-
ties that are outlined in the instructional materials of the
challenge. Thus, rewards for actions that adversely affect
critical mission priorities are more impactful than actions
that target non-critical systems. For example, exploiting a
host with escalated privileges has a more impactful reward
score than simply discovering a host on the network. The dy-
namic reward function employed in CC4 primarily focuses
on the effect blue and red actions in the network have on
the green agents. This focus was preferred over a purely red
agent action focus in order to limit state leakage to the blue
agents because, as in reality, the blue defenders do not in-
stantly know the movements of every attacker on the net-
work. Green agents can perform three types of actions: 1)
Sleep - the equivalent of performing no action that step; 2)

28909



Local Work - the green user “uses” a service on the host they
have a session on; and 3) Access Service - the green user
accesses a service on another host. Green agents randomly
select one of these three actions every turn.

Red and blue actions can both cause Local Work and Ac-
cess Service to fail, resulting in a negative reward. The red
agent’s Impact action can also cause a negative reward, as
this signifies an attack on the Operational Technology (OT)
Service. The success or failure of an action, and in which
subnet, is used to calculate a reward score for the given
timestep. The cumulative reward for each time-step is cal-
culated into the final reward.

Changing mission priorities are also captured in the re-
ward function with the use of mission phases. The simula-
tion’s episode length is divided into three phases, with the
first being the mission pre-planning phase, and the last being
two different active missions. The rewards change with each
phase to reflect their shifting priorities and requirements.

Network Communication Policy
Another dynamic aspect of the simulation is the network
communication policy. The policy is not enforced by the
environment but is obeyed by the green agents. When the
green agents are not using a specific route, having it open
only benefits red agent movement; conversely, if the green
agents plan on using that route and it is blocked, blue will
receive negative rewards due to the green Access Service
action failing. This communication policy changes with the
mission phase to reflect changing mission priorities.

Blue Agent Space & Communications
The blue action space consists of eight actions with vary-
ing time durations in steps, as shown in brackets next to the
action:

1. Monitor (1) – collects all the ‘events’ generated by the
environment during that step, for the subnet the agent is
in. This mimics the event logs produced by an intrusion
detection system (IDS).

2. Analyse (2) – examines a host for files left behind by
attacker activity, such as utilising an exploit or escalating
privileges. This mimics threat hunting behaviour.

3. Deploy Decoy (2) – creates a honeypot service on a host,
which always generates events and cannot be used to gain
access to the host.

4. Remove (3) – removes any non-privileged, user-level ses-
sions from a specified host. This action is limited due to
the assumption of a persistence mechanism for privileged
sessions.

5. Restore (5) – re-images a host, resulting in the removal of
all malicious activity; including privileged red sessions.

6. Block Traffic Zone (1) – blocks traffic between two sub-
nets. This affects all traffic apart from blue agent messag-
ing and red sessions resulting from a phishing email.

7. Allow Traffic Zone (1) – reverses the effect of a block
traffic action.

8. Sleep (1) – equivalent of performing no action.

The time durations penalise the use of more powerful ac-
tions to balance the action’s overall effectiveness, and to
mirror the time requirements of more resource intensive ac-
tions, such as re-imaging a host. Actions that are submitted
by agents but cannot be performed, such as trying to run an
action on a host that does not exist in the environment, will
result in an Invalid Action.

As well as choosing an action each turn, each blue agent
can also send eight bit messages to the other blue agents.
This is unaffected by Block/Allow Traffic Zone actions and
is an opportunity for collaborative agent decision-making.
How this communication method is encoded is defined by
the user, however it will default to zeros if not specified.

Red Agent
The red agent action space consists of actions that allow the
agent to discover information about the area of the network
they are in, gain sessions of different privileges, and nega-
tively affect the ability for green to successfully complete
their actions. The type of red agent that the challenge evalu-
ates the blue agents against uses a finite state machine. The
agent internally records the hosts that they are aware of and
assigns a state to each host. The states represent how much
knowledge the red agent has about the host and the stage
they are at of taking control over that host. The agent con-
tains a probability matrix that is used to choose the next ac-
tion based on a chosen host’s current state. For the challenge
evaluation, the host chosen to be acted upon is random.

Evaluation Method
The platform we chose to host this challenge is Codalabs.
On submission of an entry, Codalabs automatically evalu-
ates the agent in the CC4 environment. This produces data
used for later analysis and extracts the average reward which
is used for the challenge leaderboard. The usage of this plat-
form significantly reduced the difficulty and time needed to
successfully run the challenge. To test the generalisability of
the agents, we evaluated them in an additional four scenarios
that are slight modifications to CC4, these being: 1) Constant
Network Size; 2) Improved Decoy Detection; 3) Increased
Phishing; 4) Stealthy Red; 5) Aggressive Red. All submit-
ted blue agents were developed without any knowledge that
these additional tests were to be carried out. Details of these
modifications are in the following section.

Results
The Best Agent from the Top Four Teams
CC4 was designed and developed to study MARL algo-
rithms that coordinated a defensive strategy to achieve a
goal. However, it is not limited to only evaluating MARL
solutions. Across the fifteen CC4 participants, there were
sixty-five unique submissions, composing both MARL-
based and non MARL-based agents. For brevity, we pro-
vide an analysis on the best performing agent of the top four
teams. The following sections describe how these agents
work, and were authored by the developers of the agents.

28910



Team Name Agent
Type

CC4 Constant
Network
Size

Improved
Decoy
Detection

Increased
Phishing

Stealthy
Red

Aggressive
Red

Team UC Heuristic −113± 35 −101± 36 −138± 77 −534±347 −153±112 −508±277
Team Lancer Heuristic −118± 40 −71± 23 −151± 52 −232± 79 −871±627 −801±236
Team Punch Heuristic −142± 44 −94± 20 −171± 44 −205± 78 −158± 46 −837±203
Team Cybermonic MARL −193± 84 −176± 51 −198± 53 −350±182 −996±482 −654±244

Table 2: Scores for the highest performing CC4 agents from the top four teams submitted to the public CC4 competition
and variations of the evaluation environment considered throughout the discussion chapter: absence of invalid actions and
generalisations. Each score indicates the average cumulative reward per episode, taken over 100 episodes of 500 steps each.

Team UC We developed a rule-based heuristic based on
the following principles: (i) events filtering to improve ma-
licious activities detection, and (ii) combining reactive and
proactive defence. We revised the observation vector to use
one-hot encoded vectors that included additional useful in-
formation such as malicious processes, connections, and file
flags remain until either Restore or Remove has been used on
the host. In doing so, we were able to better understand the
threats being faced in each subnet, allowing us to implement
an effective defensive protocol. Our agent reactively uses the
Restore action on hosts flagged for connection events, while
process events and malicious files are dealt with by using
either Restore or Remove. If there are no malicious flags,
then agent will implement proactive defensive actions such
as Allow Traffic Zone to subnets according to the commu-
nication policies. After the necessary subnets are unblocked,
the agent will Block Traffic Zone to any subnets according to
the communication policies of the current phase. If there are
no malicious flags, and no requirement to block or unblock
any subnets, the agent will select either Analyse, Monitor, or
DeployDecoy. If DeployDecoy is selected, it will be used on
a random valid host. If Analyse is selected, it will be used
on any host that has longest since been analysed or restored,
and that has not been subject to the Remove action.

Team Lancer Our highest-scoring agent is heuristic and
does not use machine learning. Our agents work indepen-
dently but use identical logic. The agents start by placing
one decoy on each host. They then keep performing Analyse
actions on the hosts in a roughly round-robin order. Depend-
ing on the result of Analyse, the agent immediately performs
Restore (if escalate.sh is found), or Remove (if cmd.sh is
found), or continues with the next host. Each agent main-
tains a floating point priority value for each host, and al-
ways chooses the host with the highest priority. The priority
of each host is initialised to a configurable value, decreased
after each Analyse/Restore/Remove action on the host, and
increased in response to Monitor observations.

Team Punch Our top performing agent, which performed
much better than our RL agents, applied an identical strategy
in each subnet. This followed a simple pattern of analysing
and subsequently restoring infected machines in a round-
robin fashion. To implement this heuristic policy, an addi-
tional wrapper was needed that included the results from
analyse actions in the observation vector. The new wrap-

per queried CybORG for each agent after stepping the en-
vironment and checked for files present in the raw CybORG
observation. If files were present and any had a density of
greater than 0.9, a feature for the host the files were from
was set to True, else in all other instances, it was set to False.
With this new information, we were able to implement the
described heuristic as a state machine by tracking the step
count and current state.

Team Cybermonic We created a wrapper to model the
environment as a temporal, attributed graph. We track five
types of entities: Hosts (users and servers), Routers, Open
Ports, Files, and the Internet. The relationship between en-
tities, and their associated features, can be found on our
GitHub page (King 2024). Each agent independently main-
tains an approximation of the true environment graph us-
ing the partial observations emitted by the environment. Be-
cause we represent the environment as a graph, actions are
realised as graph edits. When an agent successfully com-
pletes an action, it updates its internal approximation of
the environment graph. By representing actions as functions
upon nodes, we are free to increase or decrease the action
space by changing the size of set of actionable nodes. Agents
process states using a graph neural network (GNN) (Hamil-
ton, Ying, and Leskovec 2017), which encodes node features
and topological features of the network. We implement a
topological embedder proposed by (Janisch, Pevnỳ, and Lisỳ
2020), and also create a global graph vector that encodes the
observation as a whole. We use these embeddings to calcu-
late the probability of taking an action on a node or edge.
The actor module outputs the probability of taking an ac-
tion, and the critic uses the global graph vector g to estimate
the value of the current state. Each agent is trained indepen-
dently using PPO (Schulman et al. 2017).

Discussion
Constant Network Size
One challenge facing participants was the randomisation of
the number of users and servers for each episode. With 100
episodes all agents faced a wide variety of users and servers
in each zone, making it extremely challenging for the agents
on their own to learn and adapt to this. As such, when inves-
tigating the strategies of the submissions it became apparent
that several agents were attempting to take actions on users
and servers that did not exist within an episode. In doing so,

28911



the environment was unable to process the action, and thus
deemed the action to be invalid.

Team UC’s submission accounted for this behaviour by
expanding the observation vector to include information on
present users and servers in each episode. This produced a
more efficient agent by eliminating the inadvertent return of
invalid actions. Almost all other agents did not account for
this, so we sought to investigate the utility of each agent
strategy where the users and servers were known for each
episode. This was achieved by fixing the number of users
and servers to their maximum value. The change in agent
rankings in this experiment, as shown in Table 2, indicate
that an agent’s strategy and the information given to it are
vital for successfully defending a network. Notably, all sub-
mitted MARL solutions failed to learn how to determine
the network configuration at the beginning of each episode.
This modifiable parameter highlighted a weakness that fu-
ture MARL approaches will have to overcome to become
effective autonomous agents.

Generalisability of Agents
A common criticism of RL often centres around the chal-
lenges of applying RL into OT (e.g., a networked system
with industrial control hardware) where the environment is
often much more complex and the adversarial actions/strate-
gies less defined. The challenge for RL is often the balance
between generalisation, by keeping the training limited but
the agent adaptable, and over-fitting, whereby the agent is
trained too well on a specific scenario and cannot react to
new situations. The goal is to find the sweet-spot where an
RL agent is well-suited to the challenge it is presented whilst
being able to handle changes to the environment.

CC4 has many parameters, all of which can be easily
modified to produce a starkly different scenario, enabling
future researchers to readily tune the environment to test
novel scenarios of interest. To investigate generalisability,
numerous scenario parameters were modified and the best
performing submissions of the top four teams were evalu-
ated under the new conditions. The participants, as well as
their agent submissions, were never exposed to these scenar-
ios. Four scenarios were explored: Improved Decoy Detec-
tion, Increased Phishing, Stealthy Red, and Aggressive Red:
1. Improved Decoy Detection. DiscoverDeception red ac-

tion was increased from 0.5 to 1, the false positive rate
from 0.1 to 0, and the duration reduced from 2 steps to 1,
making decoys an ineffective means of red detection.

2. Increased Phishing. The probability that when a green
agent chose the EnterpriseGreenAgent action that it
would trigger a phishing email attack was increased from
0.01 to 0.75, significantly increasing the rate at which
green agents spawned red agents.

3. Stealthy Red. The false positive detection rate of the En-
terpriseGreenAgent is changed from 0.01 to 0.75. Addi-
tionally, within the DiscoverNetworkServices red action,
the detection rate in each of the three types was changed
from 1, 0.75, and 0.25 to 0.1.

4. Aggressive Red. All red agent actions are reduced to a
duration of one timestep, forcing blue agents to react

more quickly to all red agent behaviours whilst being
slower to complete their actions.

The Improved Decoy Detection experiment suggests that the
red agent gains a slight advantage in comparison to the orig-
inal scenario. However, the red agent may reveal its inten-
tions by determining if a decoy is a decoy, which the blue
agent can exploit if it acts swiftly. All three other general-
isations (Improved Phishing, Stealthy Red, and Aggressive
Red) detrimentally affect the defenders’ cumulative scores.
When the conditions of the attack are altered, the imple-
mented blue agent, whether it was a heuristic or MARL-
based agent, is unable to effectively counter the attack.

Similar results were found for other MARL based submis-
sions that were submitted to CC4. Across all experiments,
and all the top submissions from the fifteen participants,
we found that the heuristic-based agents outperformed all
MARL-based submissions. This suggests that MARL-based
agents require further research to more effectively respond
to both known and unknown threats.

Impact & Future Works
CC4 significantly reduces both the financial cost and time
needed for future studies by offering a reusable open-source
environment. This foundational platform empowers future
researchers and developers to rapidly extend this field by
eliminating the need to build environments and agents from
scratch. Further, the comprehensive documentation enables
a diverse group of individuals to quickly comprehend this
challenging area, potentially fostering growth in this emerg-
ing field. Nevertheless, a range of additional case stud-
ies must be carried out in order to deploy MARL-based
technologies on real world systems. Crucially, a compari-
son between single agent and multi-agent DRL algorithms,
across different network sizes, must be done to determine if
and when MARL based algorithms become more effective.
Lastly, MARL based algorithms must be tested in an em-
ulated environment prior to deployment in real-world net-
works. CC4 can serve as the foundational platform for build-
ing these emulated environments, reducing time required for
development and expediting agent training and evaluation.

Conclusion
CC4 is a novel open-source multi-agent cyber defence en-
vironment, designed to facilitate research into Multi-Agent
Reinforcement Learning applications for autonomous cy-
ber defence. Its easily configurable nature offers a variety
of scenarios to evaluate the effectiveness of MARL based
algorithms, as well as general multi-agent systems. Addi-
tionally, we have established agent performance benchmarks
that provide a comparative baseline for future agent devel-
opment. Preliminary studies indicate that while Deep Re-
inforcement Learning shows high potential in single-agent
environments, its application in multi-agent scenarios ne-
cessitates further consideration and additional features for
effective, coordinated cyber defence.

28912



References
Akbari, I.; Tahoun, E.; Salahuddin, M. A.; Limam, N.; and
Boutaba, R. 2020. ATMoS: Autonomous threat mitigation
in SDN using reinforcement learning. In NOMS 2020-2020
IEEE/IFIP Network Operations and Management Sympo-
sium, 1–9. IEEE.
Buşoniu, L.; Babuška, R.; and De Schutter, B. 2010. Multi-
agent reinforcement learning: An overview. Innovations in
multi-agent systems and applications-1, 183–221.
Collyer, J.; Andrew, A.; and Hodges, D. 2022. ACD-G:
Enhancing autonomous cyber defense agent generalization
through graph embedded network representation. In Pro-
ceedings of the 39th International Conference on Machine
Learning (ML4Cyber workshop). International Conference
on Machine Learning.
Drašar, M.; Moskal, S.; Yang, S.; and Zat’ko, P. 2020.
Session-level adversary intent-driven cyberattack simulator.
In 2020 IEEE/ACM 24th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT), 1–
9. IEEE.
Dstl. 2023. PrimAITE. https://github.com/Autonomous-
Resilient-Cyber-Defence/PrimAITE. Accessed: 2018-07-
03.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Hammar, K.; and Stadler, R. 2020. Finding effective security
strategies through reinforcement learning and self-play. In
2020 16th International Conference on Network and Service
Management (CNSM), 1–9. IEEE.
Hammar, K.; and Stadler, R. 2021. Learning intrusion pre-
vention policies through optimal stopping. In 2021 17th
International Conference on Network and Service Manage-
ment (CNSM), 509–517. IEEE.
Hammar, K.; and Stadler, R. 2022. Intrusion prevention
through optimal stopping. IEEE Transactions on Network
and Service Management, 19(3): 2333–2348.
Janisch, J.; Pevnỳ, T.; and Lisỳ, V. 2020. Symbolic Rela-
tional Deep Reinforcement Learning based on Graph Neural
Networks and Autoregressive Policy Decomposition. arXiv
preprint arXiv:2009.12462.
Kiely, M.; Bowman, D.; Standen, M.; and Moir, C. 2023.
On Autonomous Agents in a Cyber Defence Environment.
arXiv preprint arXiv:2309.07388.
King, I. 2024. CAGE Challenge 4 Submission. https:
//github.com/cybermonic/cage-4-submission. Accessed:
2024-07-08.
Kunz, T.; Fisher, C.; La Novara-Gsell, J.; Nguyen, C.; and
Li, L. 2022. A Multiagent CyberBattleSim for RL Cy-
ber Operation Agents. In 2022 International Conference
on Computational Science and Computational Intelligence
(CSCI), 897–903. IEEE.
Li, L.; Fayad, R.; and Taylor, A. 2021. Cygil: A cyber gym
for training autonomous agents over emulated network sys-
tems. arXiv preprint arXiv:2109.03331.

Li, Y. 2017. Deep reinforcement learning: An overview.
arXiv preprint arXiv:1701.07274.
Macas, M.; Wu, C.; and Fuertes, W. 2023. Adversarial ex-
amples: A survey of attacks and defenses in deep learning-
enabled cybersecurity systems. Expert Systems with Appli-
cations, 122223.
McLean, M. 2024. 2024 Must-Know Cyber Attack Statistics
and Trends. https://www.embroker.com/blog/cyber-attack-
statis. Accessed: 2024-05-14.
Microsoft Threat Intelligence. 2021. Gamifying machine
learning for stronger security and AI models. https://www.
microsoft.com/en-us/security/blog/2021/04/08/gamifying-
machine-learning-for-stronger-security-and-ai-models/.
Accessed: 2018-07-03.
Miehling, E.; Rasouli, M.; and Teneketzis, D. 2015. Optimal
defense policies for partially observable spreading processes
on Bayesian attack graphs. In Proceedings of the second
ACM workshop on moving target defense, 67–76.
Molina-Markham, A.; Miniter, C.; Powell, B.; and Ridley,
A. 2021. Network environment design for autonomous cy-
berdefense. arXiv preprint arXiv:2103.07583.
Nguyen, T. T.; and Reddi, V. J. 2021. Deep reinforcement
learning for cyber security. IEEE Transactions on Neural
Networks and Learning Systems, 34(8): 3779–3795.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2017. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Standen, M.; Lucas, M.; Bowman, D.; Richer, T. J.; Kim,
J.; and Marriott, D. 2021. Cyborg: A gym for the de-
velopment of autonomous cyber agents. arXiv preprint
arXiv:2108.09118.
Tan, M. 1993. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the tenth
international conference on machine learning, 330–337.
TTCP. 2024. TTCP CAGE Challenge 4. https://github.com/
cage-challenge/cage-challenge-4. Accessed: 2025-01-27.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. nature,
575(7782): 350–354.
Vyas, S.; Hannay, J.; Bolton, A.; and Burnap, P. P. 2023.
Automated cyber defence: A review. arXiv preprint
arXiv:2303.04926.

28913


