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Abstract—Document recommendation systems have tradition-
ally relied upon high-dimensional vector representations that
scale poorly in corpora with diverse vocabularies. Existing graph-
based approaches focus on the metadata of documents and,
unfortunately, ignore the content of the papers. In this work, we
have designed and implemented a new system we call GRAGGLE,
which builds a graph to model a corpus. Nodes are papers, and
edges represent significant words shared between them. We then
leverage modern graph learning techniques to turn this graph
into a highly efficient tool for dimensionality reduction. Doc-
uments are represented as low-dimensional vector embeddings
generated with a graph autoencoder. Our experiments show that
this approach outperforms traditional document vector-based
and text autoencoding approaches on labeled data. Additionally,
we have applied this technique to a repository of unlabeled
research documents about the novel coronavirus to demonstrate
its effectiveness as a real-world tool.

Index Terms—Data mining, graph analytics, recommender
systems, text mining

I. INTRODUCTION

Since the early days of machine learning, classifying text
information has been a major area of study. It is now almost
trivial to assign multidimensional data points to accurate
classes based on their proximity. But turning documents into
points in Euclidian space is a challenge. Feature extraction is
defined here as finding a function f : C → Rd where C is a
set of documents, also called a corpus, and d is an arbitrary
constant. The goal is to find an f such that the resulting
vectors contain as much information about the original texts
as possible while keeping d low. If this is done correctly, any
labels the original documents had can be inferred from the
feature vectors using standard clustering techniques.

The most prominent way to represent documents in the
literature is through TF-IDF encoding [1], or some variant
thereof. In this method, features are some function of word
count, and the dimension of vectors is necessarily proportional
to diversity of the corpus’ vocabulary. As a result, many
state-of-the-art document clustering approaches simply accept
high dimensionality as a given and strive to build effective
algorithms despite it [2]–[4].

In our view, it is more apropos to represent a corpus as a
whole, as a network of interrelated parts, where any individual
document is better understood in relation to its neighbors. By

representing corpora as graphs, this view of documents as a
collective rather than discrete units is realized. However, exist-
ing graph-based techniques are often based on relationships in
the metadata of the papers such as citation networks. They are
more often used for supervised learning [5]–[7]. Often these
techniques use computationally expensive means of graph
clustering such as geodesic distance [8]. Few exist which have
graph structures derived from document text. Those that do,
do not use a graph autoencoding technique [9]–[11] and lack
the generality and expressiveness it offers.

To address these perceived shortcomings in the literature,
we propose GRAGGLE1, a novel approach to feature extrac-
tion from text that captures complex contextual relationships
between documents. Rather than focusing on metadata, or
using vectors generated just from the text, GRAGGLE generates
a graph structure that captures textual similarities between
documents. By representing a collection of texts as a graph of
significant words shared between documents we can use graph
autoencoding techniques [12] to extract features from text. Our
experiments show that even though our vectors are often 10
times smaller than those used by traditional techniques, the
clusters we generate have greater purity than those consisting
of TF-IDF vectors.

This work makes the following contributions:
• Tunable Dimensionality. Node embeddings from GRAG-

GLE represent the relationships between documents rather
than the words in a single document. As such, the
dimension of these vectors is a tunable parameter in the
autoencoding algorithm. In practice, the degree of vectors
built by GRAGGLE are far smaller than those required by
TF-IDF vectors for the same data.

• Generalizability. GRAGGLE can analyze any corpus.
Unlike prior work, it is not reliant on the presence
of citations in the metadata, the topics covered by the
documents, or any preprocessing which the corpus may
have undergone. Additionally, it adapts well to bag-of-
words representations of documents, so it is memory
efficient.

• Graph representation. In addition to its ultility for gen-
erating document embeddings, the graph data structure
itself holds value. As we will show, the resulting graphs

1Full code available at https://github.com/iHeartGraph/Graggle978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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are useful research tools and recommender systems sim-
ply through the relations they make explicit.

The rest of the paper is organized as follows: in § II
we outline related work and techniques for document clus-
tering. § III describes how the graph is constructed, and
how document-vectors are built from the weighted graph.
§ IV compares our method to traditional document clustering
methods. § V contains an analysis of optimal hyperparameters
for GRAGGLE. § VI presents a case study of GRAGGLE as a
paper recommender on CORD-19, a text mining dataset for
papers about COVID-19 [13]. Finally, we conclude with some
suggestions for future work on this topic.

II. RELATED WORK

Our method draws from many disparate corners of graph
and machine learning. We are most motivated by traditional
text classification methods, autoencoding techniques to reduce
dimensionality, and graph-based methods generally. To con-
textualize our technique, we present a brief overview of those
three fields.

A. Traditional Methods

Very advanced algorithms exist to quickly find points close
together in Euclidean space and assign them to clusters, but the
feature vectors they analyze have changed very little in the last
twenty years [14]. For text data, the default embedding choice
is TF-IDF vectors [1], [15], [16]. These vectors are generated
by calculating the score of each word w, in a document D
according to the following formula

TF-IDF(w,D) = log

(
|C|
nw

)
× fw,D (1)

where nw is the number of documents in the corpus, C that
contain w, and fw,D is the number of occurrences of w in D.
Consequently, the vectors representing each document have di-
mensionality equal to the total number of unique words in the
corpus. Vectors represent which bag of words each document
uses, weighted in such a way that low-information words that
appear throughout the corpus, are given less significance than
more rare words.

This approach produces obvious problems which this work
aims to address. For example, corpora with diverse vocabulary
require TF-IDF vectors of enormous degree. To combat this,
certain words are omitted from the corpus either through
stemming or according to some heuristic [17]. The information
lost in this process is negligible, and it reduces the overall
noise in the data. However, even with these minor improve-
ments, more recent studies have shown that TF-IDF vector
representations are not as effective for cluster analysis as other
text preprocessing techniques [18]. Despite this, many modern
papers still use this representation, and aim instead to find
clustering algorithms optimized for high-dimensional data [2]–
[4]. With more informative vectors to cluster, these algorithms
could perform even more effectively, yet TF-IDF remains the
popular choice.

B. Autoencoders

More recent research in clustering, and unsupervised learn-
ing in general has focused on autoencoders. Autoencoders aim
to learn low-dimensional embeddings of input data that can
be reconstructed with high fidelity. These embeddings should
carry the same amount of information as their inputs, or at
least a good enough approximation, to be used for clustering
or other unsupervised learning tasks [19].

More recently, transformer-based [20] autoencoding ap-
proaches such as BERT have become the popular choice
for natural language processing [21]. These models can out-
perform traditional machine learning techniques, especially in
fields such as sentiment analysis and machine translation [22].
But for simpler tasks like text clustering and recommendation,
BERT and simple K-Means clustering of TF-IDF vectors are
roughly equal, and in fact K-Means can out-perform BERT
in this domain [23]. We feel that to justify the number of
parameters required for these models, there ought to be major
performance improvements, and this is just not the case in this
domain.

However, deep autoencoders do not necessarily need to
use self-attention, or have millions of parameters. A simple
deep neural network can perform quite well on many NLP
tasks [19], [24], [25]. Even shallow neural network, skip-gram
approaches such as Word2Vec [26] and Doc2Vec [27] can be
highly effective. These approaches have been shown to be far
more effective on sentiment analysis than TF-IDF encodings
for the same clustering algorithms [27]. However, for text clas-
sification, the bag of words model still out-performs traditional
autoencoders [28]. Nonetheless, the dimensionality reduction
afforded by autoencoding techniques was our major motivator
to use a graph autoencoder for this task.

C. Graph-based approaches

Using graphs to represent a body of text is not a new
idea, however very few prior works build graphs from the
actual text of their corpora. Most of the work in graph-
based document clustering algorithms has been in citation
network analysis [5]–[7]. Citation networks are directed graphs
of which academic papers have been cited by others. This
tradition is so ingrained in graph neural network research
that citation network classification has become a standard
benchmark for major algorithms [5], [29], [30]. While this
is certainly a well-respected area of study, citation networks
are constantly evolving, and the newest papers–which are
ultimately the ones most interesting to classify–will inevitably
be root nodes in these networks. No one has cited them yet
making them harder to accurately classify without many older
papers in the corpus. Additionally, these techniques only work
on academic writing; for analyzing general-purpose natural
language data sets, a different approach is needed.

A few graph-based methods that learn from document
text have been proposed. We have been most influenced by
the following two. In [10] edges are only created between
documents if they are dissimilar according to some distance
measure of their TF-IDF scores. They prove that by assigning
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Fig. 1: The GRAGGLE pipeline: (a) First, build internal dictionaries for each document in the corpus, and calculate TF-IDF
scores. If a word’s score is above some tunable threshold, it is added into the edge weight from that paper to any other paper
containing that word. (b) Next, generate random walks biased by edge weight. These walks are fed into a skip-gram and
processed into vector embeddings for each node.

each node a color such that no two colors are adjacent, sets
of nodes with the same color approximate clusters of TF-
IDF vectors. Unfortunately, this method is difficult to adapt
to larger graphs. The method used by [31] assigns topics
to papers using latent Dirichlet allocation before constructing
the graph. Documents are represented as nodes, connected by
edges if the correlation coefficient between nodes’ topics in is
above some threshold. The Louvain algorithm is used to detect
communities within the graph to identify seminal papers. Both
[10] and [31] use data structures similar to ours, but they rely
on inefficient graph analytical methods to generate clusters.
By using a more modern, but still low-parameter autoencoder
approach to represent these graphs, we can discover the same
or more information in a more efficient way.

III. METHOD

GRAGGLE consists of two main components: graph con-
struction, and generating node embeddings. In this section,
we describe these processes in detail.

A. Graph Construction

To generate node embeddings and cluster the documents,
we first extract all words from the corpus, and build the graph
representing it. The preprocessing stage consists of two steps:
building document and corpus dictionaries, and building the
graph2. This process is illustrated in Subfigure 1a.

To build the dictionaries, each document in the corpus is
parsed to generate a hash map that keeps track of how many
times each word in the document was used. At the same time,
a corpus-wide dictionary is constructed which maps each word
to the set of documents that use that word. By the end of this
process, each document in the corpus is converted to a bag of
words representation that maps words to the number of their
occurrence in that document, and the corpus-wide dictionary
holds a map from each word in the corpus, to the set of
documents containing them.

After the dictionaries have been generated, the directed,
weighted graph can be constructed. This process is shown
in Algorithm 1. The graph, G(V, E) is defined as a set of
nodes, V which represent individual documents, and a set
E of weighed edges between them. The set E is defined as

2We omit the text sanitizing process as we only work with ARFF files
which have undergone this already.

Algorithm 1 Build a weighted, directed graph from the
dictionaries
1: procedure BUILDGRAPH(corpus, docDicts)
2: Initialize

idxP tr ← [0]
column← empty list
values← empty list
threshold← tunable parameter ∈ R ≥ 0

3: for doc ∈ docDicts do
4: edges← empty hashmap of keys to values
5: for word, cnt ∈ doc do
6: weight← TF-IDF(cnt, len(corpus[word]))
7: if weight ≥ threshold then
8: for docID ∈ corpus[word] do
9: if docID ∈ edges.keys then

10: edges[docID] += weight
11: else
12: edges[docID] = weight
13: end if
14: end for
15: end if
16: end for
17: append idxP tr[−1]+len(edges) to idxP tr
18: append edges.keys to column
19: append edges.values to values
20: end for
21: return idxP tr, column, values
22: end procedure

E = {(u, v) | u, v ∈ V} where each edge in E has a weight
W : E → R+. To build it, GRAGGLE iterates over each
unique word w in each document d and calculates the TF-
IDF scores as defined by Equation 1 (lines 3–6). If this value
is above a tunable threshold t, an edge from d to any document
containing w is created with the TF-IDF score as its weight.
If an edge already exists between d and another document, the
TF-IDF score is added to the edge weight (lines 7–15). We
use a compressed sparse row (CSR) matrix to store the graph
for its efficiency in sampling node v’s one-hop neighborhood,
N (v) (lines 17–19).

For smaller data sets, the tunable threshold can be quite
low; even setting t to zero produces usable results. However,
to limit the amount of noise in the data, and to make the graph
smaller and easier to process, we recommend setting it to at
least 1, and setting it higher for larger data sets.



Algorithm 2 Cluster documents
1: Initialize

g ← a CSR matrix representing the graph
walkLen, numWalks← hyperparameters
walks← []
numClusters← user specified

2: for node ∈ g do in parallel
3: nWalks← []
4: while i < numWalks do
5: walk ← [node]
6: while ` < walkLen do
7: nextNode← g[node].column[

M(π = g[node].values)
8: ]
9: append nextNode to walk

10: node← nextNode
11: `++
12: end while
13: append walk to nWalks
14: i++
15: end while
16: concatenate nWalks and walks
17: end for
18: X ← word2vec(walks)
19: y ← KMeans(X,numClusters)

Note: M(π) denotes a selection from the multinomial distribution with
probability mass function π.

B. Embedding

In the second step, node embeddings are generated using
random walks. These embeddings can be used for clustering
or any other form of vector analysis. This process is illustrated
in Subfigure 1b.

After the graph has been created, standard graph autoen-
coding techniques may be used to generate document vectors.
Formally, the problem can be defined as finding a function

f : V → Rd (2)

where d � |V|. We accomplish this task by using a variant
of the Node2Vec algorithm [12]. This process is formally
outlined in Algorithm 2. We generate i random walks of length
` concurrently from each node, where i and ` are tunable
parameters (lines 4–6). These walks are biased by the edge
weights of potential neighbors. Selecting the next neighbor
in a walk can then be described by the discrete-time Markov
chain

P (Nt+1 = v|Nt = u) =
W (u, v)∑

n∈N (u) W (u, n)
(3)

A single step of the random walk is abstracted to a random
variable from a multinomial distribution, where the probability
mass function is the normalized edge weights, and its realiza-
tion is the index of the neighbor to walk to (line 7). This is
done for each node in parallel, as the order that the skip-gram
reads the completed walks in is unimportant, and the only
operation on the shared graph data structure is read.

This results in a sequence of walks {S0, S1, . . . , Si} which
can then be analyzed by Word2Vec [26] to generate node
embeddings (line 18). This algorithm optimizes its embeddings
such that nodes which appear together in a sequence no

more than ω hops apart have a higher cosine similarity than
nodes which do not. Here, ω denotes the window size, and
is a tunable hyperparameter. Tests showed that uniformly
random walks yielded very poor results, and the weighting
is an effective method to provide better information about the
relationships in the graph.

IV. RESULTS

In this section, we investigate the effectiveness of our
proposed embedding method for document clustering. We
evaluate its effectiveness against benchmarks set by prior
works [32] and [33].

A. Evaluation Measures

To test the effectiveness of GRAGGLE, we compare our
output to the output of two benchmarks set for document
clustering. Like the prior works, we use purity and entropy to
measure the effectiveness of our embedding technique. These
are defined by [34] as follows.

For a given set of k clusters, C, and a set of labels L which
both partition n documents, for a particular cluster Cr ∈ C,
purity is defined as

P (Cr) =
1

nr
max

i
(ni

r) (4)

where nr = |Cr| and ni
r denotes the number of elements in

Cr with true label i. The purity of the entire cluster solution
is then

Purity =

k∑
r=1

nr

n
P (Cr) (5)

Entropy is defined as the weighted sum of individual cluster
entropy balanced for the size of the cluster.

E(Cr) = −
1

log |L|

|L|∑
i=1

ni
r

nr
log

ni
r

nr

Entropy =

k∑
r=1

nr

n
E(Cr)

(6)

A perfect purity score is 1, and a perfect entropy score is 0.
However, by setting the cluster size to just 1 point this can be
trivially achieved. For this reason, unless otherwise specified,
the measurements reported use data that have been clustered
into an equal number of partitions as class labels.

B. Data Set Information

To verify the effectiveness of GRAGGLE, for our experi-
ments, we use four labeled data sets. The CSTR corpus3, the
Reuters-21578 corpus4, the WebKB corpus5, and the K data
set6, all of which have been widely used in prior works.

CSTR is a collection of abstracts from technical reports
from the University of Rochester between the years 1991 and

3http://sites.labic.icmc.usp.br/text collections/CSTR.arff.zip
4http://sites.labic.icmc.usp.br/text collections/Reuters-21578.arff.zip
5http://sites.labic.icmc.usp.br/text collections/webkb.arff.zip
6http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/s.tar.gz

http://sites.labic.icmc.usp.br/text_collections/CSTR.arff.zip
http://sites.labic.icmc.usp.br/text_collections/Reuters-21578.arff.zip
http://sites.labic.icmc.usp.br/text_collections/webkb.arff.zip
http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/s.tar.gz


TABLE I: Data Set Metadata

Data Set Documents Unique Words Classes

CSTR 299 1,725 4
Reuters-10 10,345 13,276 10
WebKB 8,282 22,891 7
WebKB-4 4,199 19,028 4
K Data Set 2,340 21,839 20

2002. Reuters-10 is a collection of categorized articles from
the Reuters newswire in 1987. As was done by [32] we only
use documents from the top 10 most represented classes from
the Reuters-21578 data set. WebKB is a collection of web
pages from various university computer science departments.
As was done by [32], [33], we do two experiments on this data
set: one on documents from all classes, denoted WebKB, and
one on the top 4 classes excluding the class “other”, denoted
WebKB-4. K Data Set contains documents published online in
October 1997 by Reuters. Table I contains information about
the metadata of each data set.

TABLE II: Cluster Purity

Data set Vector K-Means SLINK CLINK UPGMA

CSTR

TF-IDF 0.744 0.532 0.423 0.643
AE 0.742 0.434 0.732 0.639
VAE 0.445 0.441 0.443 0.441
GRAGGLE 0.813 0.434 0.598 0.780

Reuters-10

TF-IDF 0.643 0.393 0.531 0.498
AE 0.611 0.436 0.542 0.491
VAE 0.583 0.428 0.495 0.435
GRAGGLE 0.664 0.382 0.417 0.402

WebKB

TF-IDF 0.423 - - -
AE 0.455 0.455 0.455 0.455
VAE 0.505 0.505 0.505 0.505
GRAGGLE 0.627 0.455 0.456 0.455

WebKB-4

TF-IDF 0.534 0.392 0.446 0.395
AE 0.506 0.505 0.505 0.505
VAE 0.505 0.505 0.505 0.505
GRAGGLE 0.732 0.391 0.451 0.391

K Data Set

TF-IDF 0.627 0.220 0.514 0.551
AE 0.426 0.273 0.404 0.360
VAE 0.406 0.291 0.378 0.343
GRAGGLE 0.716 0.220 0.639 0.593

C. Comparison to Vectors

To analyze the effectiveness of our method, we compare
it to the results of two benchmarks generated with standard
techniques.

The first benchmark is reported by [32]. This work clusters
TF-IDF vectors using several different algorithms including
an experimental one. As we are proposing a novel method
of document embedding, not clustering, we only compare
our results to those generated through widely used clustering
algorithms.

We cluster the same embeddings using four different algo-
rithms: K-Means, Single Linkage (SLINK), Complete Linkage
(CLINK), and Unweighted Pair Group Method with Arith-
metic mean (UPGMA). In addition to the results from [32]
we also compare GRAGGLE to vectors generated with an
autoencoder (AE) and a variational autoencoder (VAE). Both
autoencoders follow similar architecture to that used by [35].

TABLE III: Change in cluster purity and entropy with respect
to the number of clusters, K

K
Word Count TF-IDF GRAGGLE

Pur. Ent. Pur. Ent. Pur. Ent.

4 0.6211 0.6652 0.6322 0.6264 0.7164 0.4858
8 0.6234 0.6462 0.6535 0.6031 0.8171 0.3364
12 0.6500 0.6105 0.6413 0.6162 0.8023 0.3463
16 0.6448 0.6073 0.6435 0.6170 0.8388 0.2775

The benchmarks for TF-IDF vectors used the 1,000 most
significant words of each data set as calculated with mutual
information to class labels to form their TF-IDF vectors,
meaning they are all 1,000 dimensional. Conversely, We use
at most 512 dimensions for both the WebKB data sets and
the K data set, 256 dimensions for the Reuters data set, and
128 dimensions for the CSTR data set. For the autoencoding
methods, we use the same embedding dimensions as we use
for GRAGGLE.

The average results of 5 independent runs are reported in Ta-
ble II. We observe that regardless of the algorithm, embeddings
generated by GRAGGLE perform equally, or better than simple
TF-IDF vectors, with the exceptions of the agglomerative
methods on the Reuters-10 data set, and UPGMA on the
WebKB-4 data set by a very small margin. However, we note
that with the best performing clustering algorithm, K-Means,
GRAGGLE embeddings always outperform both standard TF-
IDF vectors, and those generated with autoencoders.

When testing against [32], we use as many clusters as there
are classes, as this is how the scores we compare to were
generated. However, with any clustering algorithm, allowing
for more clusters can produce better results. To measure this
empirically, we compare to the benchmarks set by [33]. This
benchmark set measures the effect of increasing the number
of clusters on purity and entropy. The prior work uses only
clusters generated by the K-Means algorithm on the WebKB-4
data set. These benchmarks include scores for both TF-IDF
vectors, and word count vectors.

Table III shows GRAGGLE embeddings have better purity
and entropy scores with the minimum number of clusters than
the traditional methods and that adding more clusters improves
both metrics at a far greater rate. When the number of clusters
is quadrupled, purity increases by 0.1224 for GRAGGLE em-
beddings, compared to a maximum change of 0.0289 in the
word count vectors. Likewise, entropy decreases by 0.2083
over the same period for GRAGGLE embeddings, compared to
a decrease of only 0.0579 in the word count vector clusters.
Additionally, for both word count and TF-IDF vectors, there
are very swift diminishing returns when increasing the number
of clusters; GRAGGLE however, continues to improve as the
number of clusters increases.

V. HYPERPARAMETER TUNING

There are three important hyperparameters associated with
GRAGGLE: the threshold for what is considered an important
word (t), the number of random walks per node (i), and



Fig. 2: The average cluster purity after 5 independent runs of
GRAGGLE on the CSTR data set with variable hyperparam-
eter TF-IDF threshold. The highest average purity occurs at
threshold 3.4.

the window size (ω). In this section we discuss methods of
estimating these hyperparameters, as well as explore why some
of them appear so invariant. Unless otherwise specified, the
threshold value is 3.4, the number of walks is 200 and the
window size used by Node2Vec is 3 for all experiments in
this section.

Possibly the most important hyperparameter to tune is the
TF-IDF minimum threshold. This parameter regulates the
minimum impact a word must have in a document before it
may be added into its edge weights. Leaving this parameter
too low can cause an explosion of low-weight edges in the
underlying graph data structure. This causes the output data
to be very noisy and have a high degree of variance. It
also directly influences memory and time complexity, both
of which grow in proportion to the number of edges. On the
other hand, setting this parameter too high comes at the risk of
information loss. If the threshold value is too high, one risks
filtering out too many edges, leaving some nodes orphaned.
While this may sometimes be a desirable effect, and act to
sort out low information papers from a corpus, for document
classification, it is detrimental.

As Figure 2 shows, there is an negative exponential rela-
tionship between increasing the threshold value and cluster
purity. We note however, that a threshold of zero, even for
the smallest corpus, is still not a local maximum. Rather, the
best threshold is a value greater than zero, but not too large.
Because it takes longer to compute the smaller the threshold
is, and the optimal threshold value is greater than zero, we
recommend a backward parameter search to find this value.

Figure 3 shows the effect on cluster purity of changing
the number of walks per node and the window size in the
random walk stage of GRAGGLE. As is evident from the figure,
the best values for both the walk length, and the number
of random walks are quite low. This is interesting, because
the original Node2Vec paper found no diminishing returns
for either parameter [12]. However, their algorithm was not

Fig. 3: The average cluster purity after 5 independent runs of
GRAGGLE on the CSTR data set with variable hyperparame-
ters number of walks and window size. The highest average
purity occurrs when window size is 2 with 100 random walks.

running on graphs with weighted edges.
Intuitively, if one node is weakly connected to another, then

their co-occurrence in a given set of positive samples should be
exceedingly rare, if it occurs at all. For example, suppose two
papers share one word with enough impact not to be filtered
out, but no other words; their similarity is coincidental at best.
But despite their listless linkage, if the number of walks from
that first node is high enough, there is non-zero probability
that they will be placed together in the encoder’s positive
sample set at least once per epoch. Thus, the weak connection
is overlooked, and the learned embeddings are more similar.
For this reason, when edge weight is important, a few biased
walks are better than many long ones.

Large window sizes introduce an entirely new problem.
By placing neighbors from too far away into the same set
of positive samples, papers with no relation whatsoever to
the starting paper may mistakenly be associated with it. The
underlying graph data structure is extremely dense, so each
node has an enormous degree. For this reason, it is critical not
to stray far from the starting node’s neighborhood. Rather than
implementing an expensive algorithm to control this aspect
of the walk, we find it is more efficient to clamp down the
window size so there is no possibility of nodes outside of a
starting node’s immediate neighborhood appearing in a given
positive sample set.

VI. CASE STUDY: THE CORD-19 DATA SET

In the midst of the coronavirus pandemic, access to pertinent
information is more important than ever. The rapid rate of new
discoveries about this virus has created a wealth of research
papers that should not be understood simply on their own, but
as a gestalt of knowledge that builds upon itself. This rapid
rate of publication means traditional citation network analysis
is less effective as the most recent, and potentially most urgent
papers have yet to be cited; this requires a text-based approach.



Fig. 4: The GRAGGLE search engine displaying t-SNE projected embeddings of the 2-hop neighbors of a search result. Different
colored nodes represent different cluster assignments.

But the specific and sesquipedalian vocabulary used in medical
journals makes TF-IDF approaches intractable.

To demonstrate the efficacy of GRAGGLE, we have imple-
mented it on the CORD-19 corpus as a case study.7 This data
set consists of over 107,000 research papers about the coron-
avirus [13]. As the experiments show, using an autoencoder to
generate vectors from a graph built with our method produces
vectors which cluster better than those generated from just TF-
IDF vectors. We then infer that the graph data structure itself
holds valuable information about the papers it describes and
is worthy of exploration on its own.

To do this, we generate a graph, and vector embeddings
as described in § III and use K-Means clustering to label the
512-dimensional embeddings we generate. To accommodate
for the great diversity of subcategories of papers contained in
the CORD-19 data set, we set the number of clusters to 100
by default. By manually exploring the labels assigned to the
documents, we can subjectively confirm that papers clustered
together are highly related.

We then visualize the papers’ embeddings using t-SNE
decomposition [36] to generate two-dimensional coordinates.
Finally, using a simple search engine based on the Euclidean
distance between the TF-IDF encoding of the search term,
and the titles in the corpus, we display papers, as well as
neighbors from their highest weighted edges plotted according
to their embeddings. Figure 4 shows the output of this simple
search. We note that many of the well clustered neighbors
do not appear in the TF-IDF search results; the only means
of accessing them is through exploration of the graph. These
are highly related papers that would have otherwise been
overlooked.

Once one paper is identified using traditional methods, the
entirety of the graph is available for exploration. With GRAG-
GLE, papers are shown in their full context. We have shown
that this technique is empirically more effective for paper
clustering, and we believe that our visual graph exploration
method is not only more aesthetically pleasing than traditional
search engines, but also more informative.

In the results shown in Figure 5, we observe that only
a small subset of the possible 100 classes appear in this

7https://graphlab.seas.gwu.edu/graggle

Fig. 5: A subgraph of GRAGGLE centered on the 2-hop
neighborhood of the first result of a search viewed without
t-SNE coordinates.

neighborhood, and that each neighborhood adjacent to the
node in focus is highly homogeneous. In this way, we see
the paper is most strongly related to this handful of classes
represented by its neighbors. It is computationally expensive
to express that a paper is similar to multiple different classes
using just TF-IDF vectors; here it is displayed visually, and
even encoded into the vector representation.

VII. CONCLUSION

In this work, we proposed GRAGGLE, a novel document
embedding method. We build a graph that models shared
words between papers and use a skip-gram autoencoder
to generate low-dimensional node embeddings to represent
documents. Clusters generated from these node embeddings
consistently out-perform benchmarks set by prior works that
used TF-IDF and word-count vectors, as well as non-graph-
based autoencoding methods. We conclude that the vectors
derived from GRAGGLE contain more information despite their
lower-dimensional representation. Finally, we demonstrated
the utility of this method by implementing it as a visual search
engine on a real-world corpus.

Future work may include finding a method of building the
graph that allows new nodes to be added ad hoc. And though
the autoencoding stage of the method is quite efficient due
to its high capability for parallelism, new breakthroughs in
graph autoencoders, especially ones capable of inductive node

https://graphlab.seas.gwu.edu/graggle


representation, would improve this process. We hope to see
this process used with more advanced clustering algorithms.
Such great reduction in document vectors’ dimensionality
could yield fast and efficient text classification algorithms in
the future.
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