
REVELIO: Revealing Important Message Flows in
Graph Neural Networks

Haoyu He
GraphLab

The George Washington University
haoyuhe@gwu.edu

Isaiah J. King
GraphLab

The George Washington University
iking5@gwu.edu

H. Howie Huang
GraphLab

The George Washington University
howie@gwu.edu

Abstract—Explainability is crucial for the deployment of
Graph Neural Networks (GNNs) in real-world applications.
Unfortunately, existing explanation methods primarily focus on
identifying important graph components, such as nodes and
edges, rather than providing insights into the fundamental mes-
sage passing mechanisms of GNNs. This shortcoming impedes our
understanding of how GNNs make predictions and limits their
deployment in critical applications. In this paper, we introduce
REVELIO, a novel method to provide faithful explanations of
message flows in GNNs. REVELIO leverages a learning-based
approach to quantify the importance of message flows, excelling
in terms of faithfulness, compatibility, and efficiency. Our ex-
tensive experiments on both synthetic and real-world datasets
demonstrate the superiority of REVELIO through quantitative
and qualitative assessments.

Index Terms—Explainability, graph neural networks, message
passing neural networks

I. INTRODUCTION

Graph Neural Networks (GNNs) [33, 43] have showcased
their efficacy in modeling graph-structured data across di-
verse domains, including recommender system [45], chemical
analysis [17] and natural language processing [44]. Despite
their remarkable advantages, GNNs still remain black boxes,
making it difficult to understand how they make predictions.
This lack of transparency and explanability raises concerns
about the trustworthiness of GNNs and constrains their de-
ployment in critical applications, e.g., fair criminal justice
and financial lending analysis [2]. Furthermore, the need for
explainability is particularly evident in specific domains, such
as drug discovery [17], where reasoning about the candidates
is a crucial part of the process.

Given these imperative demands, there has been a growing
focus on the explainability of GNNs [53, 54]. However,
explaining GNNs presents challenges compared to traditional
deep learning models. These challenges stem from GNNs’
unique utilization of feature and structural information within
a graph and their distinctive message-passing mechanism. To
address these challenges, recent studies have introduced GNN-
specialized explanation methods, such as GNNExplainer [50],
PGExplainer [26] and PGM-Explainer [41]. Most of the meth-
ods identify specific graph components, such as nodes [56],
edges [22], features [15] and subgraphs [52], that contribute to
the predictions. Unfortunately, the existing methods fall short
in providing a comprehensive understanding of the intricate

Target node Explanatory edge Message flow

or

Fig. 1. Limitations of edge-based explanations. Suppose we aim to identify
the top-2 important message flows from the top-left node to the bottom-right
target node with a 4-layer GNN. Given a valid edge explanation (left), two
distinct yet equally valid assumptions about the message flows (shown in
different colors) can be made (middle and right), as both combinations align
with the explanatory edges.

message passing mechanism of GNNs, as they primarily focus
on identifying a subset of important graph components.

In a typical GNN [13, 20, 40, 48], each layer passes
information from one node to its neighbor nodes, and the
received information is then used to update the node em-
beddings at that layer. In an L-layer GNN, information from
a source node reaches a target node through L connected
edges (including L + 1 nodes considering the source and
target nodes). This process of transmitting information across
L steps is called a message flow. In other words, the paths
of message flows towards a node can be distinguished by L
consecutive incoming edges, where a path may reuse the same
edges multiple times, as long as they form an L-hop path to
that node. The final embedding of a node can be regarded as
the result of combining all the message flows directed towards
it.

This perspective on message flow is pivotal to understanding
how GNNs make predictions, benefiting both data compre-
hension and model development. The explanation of message
flows aligns more intuitively with the fundamental message
passing mechanism of GNNs. Moreover, this explanation
is more fine-grained compared to edge explanation, as an
individual edge within a GNN layer may carry numerous
message flows. Particularly in node classification tasks, deeper
GNN layers tend to use fewer edges for message transmission
than a shallow layer. In other words, while the number of
message flows is constant, edges in deeper layers tend to carry

821

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00067

mailto:haoyuhe@gwu.edu
mailto:iking5@gwu.edu
mailto:howie@gwu.edu

more message flows. Consequently, relying solely on edge
explanations may lead to confusion in intricate networks. For
example, consider the example shown in Fig. 1. Given only the
top-k edges, we cannot determine which of several possible
message flows lead to the prediction on the target node.
Message flow explanation is crucial in real-world applications,
such as understanding the decision-making processes and user
behaviors in a recommender knowledge graph [45], as well as
identifying the network flow that causes malware in a network
traffic graph [6]. On the other hand, to overcome challenges
such as the over-squashing problem [39] and ensure the
applicability on heterophilic graphs [58], there has been recent
interest in approaches that adaptively enhance specific message
flows [4, 7], which indicates the need for the explanation of
message flows.

Unfortunately, prior works on message flow explanation
predominantly rely on traditional machine learning explanation
techniques. Specifically, GNN-LRP [35] utilizes Layer-wise
Relevance Propagation (LRP) to assess the importance of
each message flow individually, while FlowX [12] employs
Shapley values to approximate the importance of individual
message flows through iterative edge removal. Both traditional
techniques suffer from unfaithfulness [1, 19, 21] and face
challenges when applied to the graph domain due to the unique
structure of graphs and the specific architecture of GNNs [18].
Consequently, these methods often yield inaccurate explana-
tions. In addition, both incur substantial time complexity, as
their calculations highly depend on the number of message
flows in the graph. Although the FlowX GPU implementation
alleviates this issue through graph duplication and concurrent
processing, it still requires considerable time and memory
resources.

To address these challenges, we design and implement a
faithful and efficient explanation method, named REVELIO.
Given a pretrained GNN and an input graph with its prediction,
REVELIO computes the importance scores for message flows,
which can subsequently be transferred into the importance
scores for edges within individual GNN layers or across the
entire GNN. Specifically, REVELIO first allocates message
flow masks to each message flow. During each learning epoch,
REVELIO distributes these masks to the corresponding edges
across GNN layers and refines them based on a predefined
objective function. Notably, REVELIO is a model-agnostic
approach, which is applicable to a wide range of GNNs
for various tasks, including node classification and graph
classification. Our experimental results consistently highlight
REVELIO’s superior performance in terms of faithfulness1,
compatibility and efficiency. Contributions of this paper can
be summarized as follows:

• Innovative method. We introduce REVELIO which ad-

1In this paper, faithfulness refers to the extent to which an explanation
accurately reflects the model’s actual reasoning process behind its predic-
tions [27, 16]. This concept is often defined contextually based on specific
explanation objectives and evaluation metrics. We adhere to the established
notions of faithfulness in related works [53] and follow the evaluation
guidelines in study [16].

dresses the limitations of existing methods and excels at
identifying important message flows of GNN predictions.

• Efficient approach. REVELIO leverages a learning-based
approach to simultaneously learn the importance scores
of message flows without task duplication, ensuring effi-
ciency in the explanation process.

• Extensive evaluation. We evaluate REVELIO on both
synthetic and real-world datasets, demonstrating its su-
periority over baselines through both quantitative and
qualitative assessments.

II. RELATED WORK

Graph Neural Networks. Graph Neural Networks (GNNs)
are a class of deep learning models on graph-structured
data [43, 20, 40, 48], the notion of which was first introduced
by Gori et al. [11]. They take a graph’s structure and its
corresponding features as input and output meaningful node
representations through a message passing mechanism. These
node representations are used for various downstream tasks,
which can be broadly categorized into node-focused tasks
and graph-focused tasks [57]. For example, node-focused
tasks include node classification [30] and link prediction [55];
graph-focused tasks include graph classification [8]. With the
remarkable advancement of GNNs, they can be applied to a va-
riety of domains, extending beyond tasks for which they were
originally envisioned. There have been explorations of GNNs
in computer vision [14], natural language processing [44] and
recommendation systems [45]. With this wide adoption of the
approach, the demand for explainable GNNs has only grown.

Explainability of GNNs. Driven by the demand for trans-
parency, several approaches exist to attempt to explain the
predictions of GNNs. Note that the explainability of GNNs
provides post-hoc explanations for the outputs of pretrained
GNNs, in contrast to interpretability, which is the ability to
intrinsically understand how a model would reason about a
problem [28]. We can group the explanation methods into
three main classes based on granularity [54]: instance-level,
group-level and class-level methods. Instance-level methods,
such as GNNExplainer [50] and PGM-Explainer [41], will
have different explanations for different input graphs, as
they are sample-dependent methods. PGExplainer [26] and
GraphMask [34] are group-level methods: they take a group
of graphs as input and generate or select the important graph
structures that explain the group. XGNN [51], as a class-level
method, explains GNNs for specified classes by generating the
most representative graph pattern for a given label. Given this
taxonomy, ours is an instance-level approach; given several
different graphs, REVELIO will provide a unique explanation
for why the GNN classified each instance.

According to the study proposed by Yuan et al. [53], GNN
explanation methods can be further categorized into five major
families: gradient/feature-based methods [31], perturbation-
based methods [42], surrogate methods [15], decomposition
methods [9], and generation methods [51]. The categorization
of explanation methods is a complex task, as it necessitates
the consideration of various critical attributes. For example,

822

model-specific [35] vs. model-agnostic methods [12] based on
design, black-box [41] vs. white-box methods [26] based on
the prerequisite knowledge, etc. Moreover, recent efforts have
expanded the spectrum of explanatory perspectives, encom-
passing counterfactual explanation [25] and causal explana-
tion [22, 23].

Message flow explanation. The majority of the existing
methods are limited to identifying a subset of important graph
components (nodes, edges and node features). To the best
of our knowledge, GNN-LRP [35] and FlowX [12] are the
most closely related methods to ours as they explain GNNs
by message flows. GNN-LRP is a decomposition method
while FLowX is a perturbation-based method. GNN-LRP
uses iterative LRP operations to trace the relevance of node
features to the output class by following the backward paths
of message flows. Specifically, the importance score for each
message flow is derived using an L-order Taylor expansion
of the model with respect to GNN layers, with each term
approximated via backpropagation. FlowX, on the other hand,
applies Shapley values from the game theory to approximate
the importance of individual message flows. It does this by
iteratively removing edges and refining the results through
learning. FlowX calculates the marginal contribution of each
message flow by removing the edge that carries it and then
dividing the resulting prediction difference by the number of
removed message flows.

Both methods are subject to issues of unfaithfulness and
significant time and memory costs. First, regarding unfaithful-
ness, GNN-LRP is constrained to activation functions such as
ReLU [3], and simple neural networks. Studies [1, 19] also
indicate that LRP may yield incorrect explanations even in
the simplest setting. As a model-specific method, GNN-LRP
is only applicable to certain GNN architectures and its imple-
mentation has to be specifically adapted, which is challenging
to deploy for non-experts. On the other hand, FlowX also
struggles with unfaithfulness, as Shapley values may introduce
unintended, mathematically formalizable properties in feature
importance explanations [21]. Additionally, removing an edge
in a given GNN layer impacts all message flows involving that
edge, which limits the choice of message flows to remove and
may lead to inaccurate Shapley value estimation.

Second, in terms of computational complexity, GNN-LRP
calculates the importance of each message flow individually,
while FlowX conducts sampling and computes the marginal
contributions of message flows separately, resulting in signifi-
cant time overhead. Even though FlowX achieves outstanding
results, we argue that the trade-off between performance
and cost is impractical, especially with large networks and
deep GNNs; additionally, using a learning-based approach
solely is enough to yield comparable or superior results with
significantly reduced costs. While parallelization can mitigate
this overhead, it comes at the cost of considerable memory
usage due to task duplication.

It is worth mentioning that efforts have been made to
reduce the time complexity of GNN-LRP. Specifically, sGNN-
LRP [46] reduces the complexity from exponential to linear

TABLE I
SUMMARY OF NOTATIONS.

Notation Description

G A graph with nodes and edges
V Node set
E Edge set
X Node features
Y Node/graph labels
Φ GNN model
F Message flows
M Learnable message flow masks
ω[·] The ultimate importance scores

with respect to the number of GNN layers; EMP-neu and
AMP-ave [47] find the top-k relevant walks within polynomial
time complexity.

III. PRELIMINARIES

We summarize the frequently used notations of this paper
in Table I. In general, capital letters are used to denote sets
or matrices, while their corresponding lowercase represent
individual elements; bold lowercase letters represent vectors.

Graphs. Let G = (V,E) represent a graph with V denoting
the nodes and E denoting the edges. The variable eij repre-
sents a directed edge from node vi to vj . To avoid confusion,
for specific node id’s we add comma delimeters. For example,
we write e1,23 to represent an edge from v1 to v23, instead of
e123. In this paper, we consider nodes to be associated with
node features X . We also assume there exists a set of labels
Y either for each node, or for each graph.

Graph Neural Networks. Graph Neural Networks (GNNs),
denoted as Φ, are specialized neural networks that process
graph-structured data. These networks take a graph and node
features as input and aim to produce a meaningful representa-
tion, commonly a set of node embeddings Z. Node informa-
tion is transmitted to neighbor nodes through connected edges,
via a message passing mechanism: the fundamental building
block of GNNs. We consider three essential steps in a GNN
layer: message calculation, message aggregation, and node
update. In the first step, for each edge eij , the GNN calculates
the message to be transmitted: ml

ij = MSG(hl−1
i ,hl−1

j , eij),
where l is the current GNN layer and hl−1

i is the node
representation of vi from the previous layer. Next, for each
node vj ∈ V , the GNN aggregates all the received messages
from its neighbor nodes Nj : ml

j = AGG({ml
ij | vj ∈ Nj}).

Last, the GNN updates the node representation from the
previous result, which serves as the output of this layer:
hl
j = UPDATE(ml

j ,h
l−1
j). The final representations are used

for tasks such as node classification [30], link prediction [55]
and graph classification [8].

Message flow. A message flow in a GNN model is the
sequential transmission of information over L consecutive
steps. A message flow can be uniquely identified by a sequence
of nodes or edges. We denote flows as F∗, where the subscript
identifies the ordered sequence of nodes that defines that flow.
For example, in a 2-layer GNN, Fijk represents the message

823

v0

v1

v2

v3
Layer 1

Message Flow Masks Layer Edge Masks

Mask Transformationv0

v1

v2 v3

Input Graph

v0

v1

v2 v3

Output Explanation

Layer 2

���

Fig. 2. The Workflow of REVELIO. In this example, we consider node classification task on v1 with a 2-layer GNN. We illustrate all the valid layer edges
but only show the message flows on layer edge e11,1 (i.e., F?1,1) for simplicity. We treat the message flow masks as learnable parameters. For each learning
epoch, we transform the message flow masks to layer edge masks, then apply them to the input graph and each GNN layer, finally we update the message
flow masks based on the feedback of GNN.

flow that starts from vi, passes through vj , and ends at vk.
Alternatively, it goes through the path {eij , ejk}. In an L-layer
GNN, all the message flows start from the input layer and
end in the L-th layer, therefore, their paths are all constructed
with a sequence of L edges. Following Gui et al. [12], for the
ease of notations, we use “∗” to denote a node sequence of
any length and “?” to represent any single node. Additionally,
“?{n}” represents a sequence of n nodes. For example, Fi∗j
represents any message flows that start from vi and end at vj ;
F?{2}ij∗ represents any message flows that take the third step
on eij .

IV. METHODOLOGY

In this paper, we aim to explain GNNs from the perspec-
tive of message flows. We propose a perturbation-based and
instance-level method, named REVELIO, to effectively identify
the important message flows. REVELIO utilizes masking to
measure the importance of message flows in GNN predic-
tions. However, due to the common aggregation operations in
GNNs, it is challenging to explicitly distinguish the importance
score of each message flow. To address this issue, REVELIO
effectively transforms message flow masks into correspond-
ing edge masks at each GNN layer, thereby enabling the
direct optimization of message flow masks. The output of
REVELIO is the importance scores of message flows, which
can subsequently be translated into important graph structures.
Fig. 2 shows the overall workflow of REVELIO, which we will
elaborate on in this section.

A. Explanation Objective

In this work, we consider two types of explanations: factual
and counterfactual. Factual explanations provide the important
input components with the maximum contribution to the
prediction. On the other hand, counterfactual explanations
aim to find the smallest possible components that, when
removed, cause the prediction to change2. In other words,
factual explanations aim to identify sufficient components,

2Following existing works [5, 25, 38], we adapt the definition of counterfac-
tual explanation to the graph domain. In this paper, we restrict the perturbation
to deletions, meaning that explanatory subgraphs are only obtained by
removing components from the original graph.

whereas counterfactual explanations focus on identifying nec-
essary components. For example, in a traffic network, a factual
explanation seeks to answer the question: “Which traffic flows
are sufficient to trigger or exacerbate a traffic jam?”, while
a counterfactual explanation asks, “Which traffic flows, if
removed, would prevent a traffic jam?”.

Factual explanation. Our objective can be formalized as
finding the message flows that obtain the maximum predic-
tion probability. This can be formulated as minimizing the
conditional entropy:

Lobj = − logPΦ(Y = c|G, F̂), (1)

where PΦ is the probability distribution that the GNN outputs,
c is the class to be explained and F̂ is reduced message
flows. The objective function maximizes mutual information
between the target label distribution and the explanation. This
suggests that the explanatory message flows, F̂ , should be
sufficient to generate similar or higher predicted probabilities.
Meanwhile, the excluded (unexplanatory) components should
make minimal or negative contributions to the prediction.
Because the original prediction is constant, Eq. (1) can be
interpreted as a measurement of prediction drop after removing
the excluded components.

Counterfactual explanation. Unlike prior works [12, 25]
that reverse the sign of Eq. (1) as their objective function for
counterfactual explanation, we use:

Lobj = − log
(
1− PΦ(Y = c|G, F̂)

)
. (2)

This function is equivalent to binary cross entropy with the
target set to label 0, while the class being explained is
designated as label 1. Compared to negated Eq. (1), it ensures
a larger penalty when the prediction deviates from the target
class and a smaller penalty when it is close to the target class.
Opposite to factual explanation, the excluded message flows
are necessary to the prediction and hence are our explanatory
components.

B. Design Details

Challenge and solution. Although the established masking
approach has shown its effectiveness in explaining edges [26,
34, 50], it cannot be directly extended to explain message flows

824

because message flows cannot be accessed as individual units.
Notably, the path of a message flow consists of L sequential
edges, in the order of the GNN layers. For example, F?{2}ij∗
represents a set of message flows that pass eij in the third
layer of a GNN. To distinguish edges from different layers,
we use elij to represent an edge from vi to vj that is processed
in the l-th layer of a GNN. We will refer to this as a layer
edge. For example, the path Fijk can instead be represented
by a sequence of layer edges, {e1ij , e2jk}.

Our approach to masking message flows involves transform-
ing message flow masks so that they can be directly applied to
individual layer edges. Specifically, we distribute the message
flow masks to their corresponding layer edges and aggregate
the received masks for each layer edge, which is formulated
as:

ω
[
elij

]
= f

(
ω
[
F?{l−1}ij∗

])
, (3)

where ω[·] represents the importance scores as well as masks,
and f(·) is the summation function. A message flow mask
collectively controls the importance of a distinct sequence of
layer edges and serves as the measurement of importance for
the entire sequence as a cohesive unit. While the reduction of
a message flow mask can affect other message flows, since
each path of message flows consists of unique layer edges,
only the corresponding message flow goes through exponential
reduction. In a 3-layer GNN, for example, when ω[Fijkl]
decreases, only the contribution of Fijkl will drop three
times consecutively. Note that we do not use individual layer
edge masks to estimate message flow importance. Each layer
edge mask reflects only the importance of its corresponding
edge. In contrast, a message flow mask collectively controls
the contribution of a distinct sequence of layer edges and
represents the importance of that specific layer edge sequence.

Message flow masks. We first initialize M ∈ R|F| as the
message flow masks that we need to learn. To limit the upper
and lower bound of the masks, we map them to importance
scores via tanh:

ω [F] = tanh (M) . (4)

Here, we incorporate negative scores to avoid excessive accu-
mulation in Eq. (3), as these scores will be aggregated as layer
edge masks in the subsequent step. Compared with sigmoid,
using tanh also prevents the problem where layer edges with
more message flows tend to gain higher mask values, even if
these edges do not carry important message flows.

Mask transformation. In this stage, the importance scores
are satisfactory for ranking edge importance within a given
layer. However, the impact of message flow masks may vary
across different GNN layers. For node classification tasks,
deeper layer edges tend to carry a higher number of message
flows. For example, in Fig. 2, the importance scores of edges
in the first layer are controlled by individual message flows;
while in layer 2, the contribution of edges is quantified by
an accumulated score of their corresponding message flows.
Additionally, the combinations of message flow masks are
different across layers. Thus, the distribution of accumulated

TABLE II
TIME COMPLEXITY OF BASELINES.

Methods Time Complexity

GNNExplainer O(T (|E|+ TΦ))
GNN-LRP O(|F| (|x|+ L|h|+ TΦ))
FlowX O(S(|F|+ L |E| TΦ))

REVELIO O(T (L |F|+ TΦ))

scores of a certain layer can be significantly different from
other layers.

To better align the accumulated results with each layer,
as well as to consider the different impact across layers, we
introduce a weight vector w ∈ RL to adjust the accumulated
scores for each layer. For example, wl is shared across all the
accumulated scores within the l-th layer. However, directly
multiplying this term with the previous results in Eq. (3) is
not feasible due to its uncertain signs. To ensure that higher
message flow scores indicate greater contribution, it is crucial
to use an activation function that guarantees the output values
of w are positive. Considering the distribution of aggregated
scores and the learning process of the weight vector, an
optimal activation function applied to w should ideally have a
low gradient in the interval (0, 1), which is common in dense
graphs within deep layers, and a high gradient in the interval
(1,+∞). Activation functions such as exp and softplus are
good candidates. Through empirical evaluation, we have found
that exp performs most effectively under these conditions. We
avoid using ReLU due to its potential to invalidate masks and
disrupt the entire GNN when values reach zero. Therefore, the
final importance score (mask) of a layer edge can be calculated
by:

ω
[
elij

]
= σ

(∑
ω
[
F?{l−1}ij∗

]
· exp(wl)

)
, (5)

where σ(·) is sigmoid function to limit the aggregated scores
within (0, 1).

Layer edge masks. Similar to other perturbation-based
methods [50, 26], the importance scores of layer edges serve
as additional edge attentions through the message passing
mechanism, which indicate the portion of a message to be
transmitted. Specifically, we rewrite the first step of a GNN
layer as:

ml
ij = MSG(hl−1

i ,hl−1
j , elij) · ω

[
elij

]
. (6)

The message flow masks are learned through Eq. (1).

C. Implementation
Matrix implementation. In practice, we can leverage the

efficiency and convenience of matrix multiplication to calcu-
late the layer edge importance. Here, we introduce a sparse
binary matrix I ∈ {0, 1}L×|E|×|F|, indicating whether a layer
edge carries a specific message flow. For example, Iijk = 1
indicates that the j-th edge in the i-th layer carries the k-th
message flow. The matrix of layer edge importance can be
computed by:

ω [E] = σ (I · ω [F]⊙ exp(w)) . (7)

825

TABLE III
STATISTICS OF DATASETS. HERE, ASTERISKS* DENOTE SYNTHETIC DATASETS AND UNDERLINES DENOTE GRAPH CLASSIFICATION DATASETS.

Dataset Reference # graphs # nodes # edges # features # classes GCN Acc. GIN Acc. GAT Acc.

Cora [49] 1 2,708 10,556 1,433 7 86.0% 83.6% 85.8%
Citeseer 1 3,327 9,104 3,703 6 75.2% 69.8% 73.9%
PubMed 1 19,717 88,648 500 3 87.2% 87.3% 85.5%
BA-Shapes* [50] 1 700 4,110 10 4 95.7% 92.1% N/A
Tree-Cycles* 1 871 1,942 10 2 82.3% 92.6% N/A
MUTAG [29] 188 17.9 39.6 7 2 81.1% 86.5% 75.7%
BBBP [32] 2,039 24.1 51.9 9 2 81.8% 80.6% 85.7%
BA-2motifs* [26] 1,000 25.0 50.9 10 2 98.0% 99.0% N/A

Here, E is the set of layer edges and ⊙ is element-wise
multiplication. When performing element-wise multiplication
between a matrix and a vector, the vector’s dimension should
match the first dimension of the matrix, so that the vector can
be duplicated to match the matrix’s size. As a result, the size
of ω [E] is L×|E|, as it stores the importance scores of layer
edges.

Counterfactual explanation. We replace Eq. (1) with
Eq. (2) for counterfactual explanation. The importance scores
of message flows are learned in the same way as before, then
we assign the negative of these scores as the final values:
ω′ [F] = −ω [F]. As before, the importance score of a layer
edge is calculated using Eq. (5), which can also be reduced to
ω′ [elij] = 1−ω

[
elij

]
. As a result, the values remain consistent

with those from factual explanation, meaning that they fall
within the same ranges, and higher values indicate greater
importance.

Additional constraints are deployed during mask learning
to serve desired properties, e.g., controlling the sparsity of the
explanatory subgraph. By doing that, we add a regularization
term to penalize the density of the subgraph. Particularly, we
average the importance scores of edges across different layers,
while skipping those that are unused by GNN layers. Then we
add the result to Eq. (1) as the final objective function:

L = Lobj + α · mean (ω [E]) , (8)

where α is the hyperparameter indicating the strength of
penalty. For counterfactual explanation, we adjust Eq. (8) to:

L = Lobj + α · mean (1− ω [E]) , (9)

with Eq. (2) being the objective function.

D. Complexity Analysis

In Table II, we summarize the time complexity of REVELIO
and other representative instance-level methods. Here, we
do not consider parallel implementation. For better analysis,
we include the time complexity of the forward operation of
GNNs, denoted as O(TΦ), which is considered the most time-
consuming operation of the process. Here, T represents the
number of training epochs and S represents the number of
flow sampling iterations (only used by FlowX). In one training
epoch of REVELIO, each message flow is distributed to L
layer edges. Taking parameter updates into account, the time

complexity per epoch can be written as O(L |F|), excluding
the model’s forward operation.

REVELIO requires more running time than GNNExplainer
due to the mask update for message flows. The upper bound of
the number of message flows is O((d−)

L) for node classifica-
tion tasks and O(|E| (d−)L−1) for graph classification tasks,
where d− is the largest incoming degree of nodes. However,
the dominant term for the complexity of REVELIO is O(TTΦ),
regardless of the graph size and GNN depth (i.e., regardless of
the number of message flows). In contrast, the dominant term
for GNN-LRP is O(|F| TΦ), and O(SL |E| TΦ) for FlowX,
where S increases with the number of message flows. In
practice, one would likely find that T ≪ L |E| ≪ |F|, making
REVELIO the only feasible option in real-world scenarios.

V. EXPERIMENT

A. Experimental Setup

Datasets. We evaluate the methods on five real-world
datasets and three synthetic datasets. Table III shows the
metadata and more details of these datasets. Here, edges are
considered as directed without self-loops. For graph classifica-
tion datasets, the numbers of nodes and edges are the average
across each graph.

Models. We use three GNNs with different structures as
the target models: Graph Convolutional Networks (GCN) [20],
Graph Isomorphism Network (GIN) [48] and Graph Attention
Network (GAT) [40]. All models use three layers, and GATs
use 8 attention heads. We present the performance accuracy
of each trained model on each dataset in Table III.

Baselines. For fair comparison, we use baselines that can
generate edge explanation. We compare REVELIO with two
traditional methods (GradCAM [36] and DeepLIFT [37]),
three edge-centric methods (GNNExplainer [50], PGEx-
plainer [26] and GraphMask [34]), one node-centric method
(PGMExplainer [41]), one subgraph-centric method (Sub-
graphX [52]), and two flow-based methods (GNN-LRP [35]
and FlowX [12]). Only GNNExplainer, PGMExplainer, Sub-
graphX, FlowX and REVELIO do not require full access to the
GNN architecture.

We use PyG implementation [10] for the edge-centric
methods and the DIG implementation [24] for the others. We
use the same learning rates as in the original implementations
for GNNExplainer, PGExplainer and GraphMask, which are
1e-2, 3e-3 and 1e-2 respectively. We assigned 500, 500,

826

GradCAM
DeepLIFT

GNNExplainer
PGExplainer

GraphMask
PGMExplainer

SubgraphX
GNN-LRP

FlowX
Revelio

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

0.80

Fid
eli

ty-

Cora (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
eli

ty-

Citeseer (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty-

Pubmed (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.50

0.60

0.70

0.80

Fid
eli

ty-

BA-Shapes (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.15

0.17

0.20

0.23

0.25

0.28

Fid
eli

ty-

Tree-Cycles (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.25

0.30

Fid
eli

ty-

MUTAG (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.30

0.40

0.50

0.60

Fid
eli

ty-

BBBP (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.30

0.35

0.40

0.45

Fid
eli

ty-

BA-2motifs (GCN)

(a) GCNs.

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

Fid
eli

ty-

Cora (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

Fid
eli

ty-

Citeseer (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.05

0.10

0.15

Fid
eli

ty-

Pubmed (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
eli

ty-

BA-Shapes (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.25

0.30

0.35

0.40

Fid
eli

ty-

Tree-Cycles (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

Fid
eli

ty-

MUTAG (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

Fid
eli

ty-

BBBP (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

Fid
eli

ty-

BA-2motifs (GIN)

(b) GINs.

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

0.80

Fid
eli

ty-

Cora (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

Fid
eli

ty-

Citeseer (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty-

Pubmed (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.15

0.20

0.25

Fid
eli

ty-

MUTAG (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.30

0.40

0.50

0.60

0.70

Fid
eli

ty-

BBBP (GAT)

(c) GATs.

Fig. 3. Comparison of Fidelity− under different sparsity rate with GNNs.

and 200 learning epochs to GNNExplainer, PGExplainer and
GraphMask. Otherwise, We adopt the original settings for the
baseline methods. For REVELIO, we set the learning rate to be
1e-2 and conduct 500 learning epochs for each instance and
adaptively adjust α for each dataset.

B. Quantitative Study

Metrics. For factual explanation, to evaluate how well the
explanatory graphs can retain the original predictions, we
employ the metric Fidelity− as follows [53]:

Fidelity− =
1

N

N∑
i=1

(
PΦ(yi|Gi)− PΦ(yi|G(s)

i)
)

, (10)

where N is the number of instances and G(s) is the ex-
planatory subgraph. This metric measures the reduction in
predicted probabilities by keeping the important graph com-
ponents while removing the unimportant ones, aligning with
our explanation objective.

For counterfactual explanation, we use Fidelity+ to assess
performance:

Fidelity+ =
1

N

N∑
i=1

(
PΦ(yi|Gi)− PΦ(yi|G(s̄)

i)
)

, (11)

where G(s̄) is the unexplanatory subgraph formed by removing
the important components. This metric evaluates the probabil-

827

GradCAM
DeepLIFT

GNNExplainer
PGExplainer

GraphMask
PGMExplainer

SubgraphX
GNN-LRP

FlowX
Revelio

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

0.80

Fid
eli

ty+

Cora (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

Citeseer (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

Pubmed (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.40

0.60

0.80

Fid
eli

ty+

BA-Shapes (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

-0.10

0.00

0.10

0.20

0.30

Fid
eli

ty+

Tree-Cycles (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

Fid
eli

ty+

MUTAG (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
eli

ty+

BBBP (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
eli

ty+

BA-2motifs (GCN)

(a) GCNs.

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

Cora (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

Citeseer (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

Fid
eli

ty+

Pubmed (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

BA-Shapes (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

Fid
eli

ty+

Tree-Cycles (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

0.60

Fid
eli

ty+

MUTAG (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

BBBP (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

0.80

Fid
eli

ty+

BA-2motifs (GIN)

(b) GINs.

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

0.80

Fid
eli

ty+

Cora (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

0.50

Fid
eli

ty+

Citeseer (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.20

0.40

0.60

Fid
eli

ty+

Pubmed (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

Fid
eli

ty+

MUTAG (GAT)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

0.80

Fid
eli

ty+

BBBP (GAT)

(c) GATs.

Fig. 4. Comparison of Fidelity+ under different sparsity rate with GNNs.

ity drop without the explanatory components, which is also
consistent with our explanation objective.

A smaller Fidelity− signifies better performance in fac-
tual explanation, while a bigger Fidelity+ indicates better
performance in counterfactual explanation. The value of both
Fidelitys falls within (1/C − 1, 1) theoretically, where C
is the number of classes. The negative value indicates that
removing the input components can increase the predicted
probability.

Specification. We randomly select 50 target instances from
each dataset for evaluation, regardless of their ground-truth
labels and predicted labels. We assess the performance of
different methods by conducting a comparison of Fidelitys

under identical sparsity levels. The sparsity ratio denotes the
proportion of edges removed from the original graph. That is,
higher sparsity indicates a smaller number of important edges
are retained. Specifically, we remove an equivalent number of
explanatory/unexplanatory edges from the graph and calculate
the Fidelity−/Fidelity+ for each method. Please note that
GATs do not work on synthetic datasets and GNN-LRP is not
compatible with GATs. Due to significant time consumption,
we evaluated SubgraphX on the last four datasets using a
subset of sparsity values with GCNs and GINs.

Factual explanation. We report the factual explanation
results with various GNNs in Fig. 3, where we show the
plots of Fidelity− with respect to different sparsity values.

828

TABLE IV
EXPLANATION AUC ON SYNTHETIC DATASETS WITH GCNS AND GINS. WE HIGHLIGHT THE BEST RESULT IN BOLD, AND THE RUNNER-UPS ARE

UNDERLINED.

GCNs GINs

Method BA-Shapes Tree-Cycles BA-2motifs BA-Shapes Tree-Cycles BA-2motifs

General

GradCAM 0.246 0.548 0.267 0.560 0.954 0.978
DeepLIFT 0.003 0.889 0.842 0.601 0.857 0.789
PGMExplainer 0.127 0.155 0.641 0.120 0.053 0.630
SubgraphX N/A 0.720 0.586 N/A 0.720 0.819
GNN-LRP 0.706 0.153 0.472 0.157 0.764 0.787

Factual
explanation

GNNExplainer 0.657 0.401 0.453 0.719 0.447 0.473
PGExplainer 0.500 0.500 0.184 0.747 0.502 0.494
GraphMask 0.499 0.500 0.485 0.520 0.508 0.536
FlowX 0.919 0.742 0.590 0.633 0.734 0.317
REVELIO 0.783 0.792 0.746 0.719 0.836 0.978

Counterfactual
explanation

GNNExplainer 0.112 0.232 0.787 0.480 0.410 0.407
PGExplainer 0.500 0.500 0.500 0.667 0.185 0.504
GraphMask 0.501 0.500 0.494 0.513 0.492 0.469
FlowX 0.804 0.716 0.414 0.652 0.777 0.410
REVELIO 0.570 0.628 0.629 0.746 0.631 0.686

Generally, REVELIO surpasses other baseline methods. In par-
ticular, REVELIO demonstrates superior performance in node
classification tasks, where fewer message flows overlap within
a single layer edge. While some baselines, e.g., GradCAM,
outperform REVELIO on specific datasets, they often decline
significantly on others. In contrast, REVELIO consistently
provides stable and reliable explanations.

We observe that FlowX and REVELIO perform better on
most datasets than other methods, which supports our claim
that fine-grained message flow explanation is advantageous.
However, REVELIO does not always achieve the lowest
Fidelity− scores for several reasons: 1) We used universal
hyperparameter values (e.g., α and learning rate) for all
sparsity values to find the overall best result, rather than
fine-tuning for each sparsity value or each dataset; 2) Graph
classification involves more complex message flow dynamics;
3) We expect occasional fluctuations due to the nature of
the task, e.g., the ReLU function can suppress gradients for
negative inputs. Despite these factors, REVELIO still achieves
the best results in most cases, showing its effectiveness in
message flow explanation.

PGExplainer and GraphMask aim to offer a global insight
into the GNNs; however, their ability to handle complex
datasets, such as Cora, falls short compared to other methods.
Due to the model-specific nature of GNN-LRP, it is not appli-
cable to GATs. REVELIO, on the other hand, can be applied
to any GNNs with the fundamental message passing archi-
tecture. For synthetic datasets such as Tree-Cycles, removing
edges may not necessarily decrease prediction probabilities,
especially for edges outside the motif (the influence of which
can be arbitrary), because the models focus solely on learning
the distinctive motif pattern, whereas the remaining portions
of the graph are generated randomly.

Counterfactual explanation. To generate counterfactual
explanations, we adopt Eqs. (2) and (9) as our objective
function with constraint. We use the original explanations pro-

vided by GradCAM, DeepLIFT, PGMExplainer, SubgraphX
and GNN-LRP. The results of Fidelity+ are presented in
Fig. 4.

In general, both FlowX and REVELIO achieve leading
results, with FlowX performing better on several datasets.
However, REVELIO exhibits an advantage on more complex
datasets, particularly in node classification tasks. Given the
minor performance gap between FlowX and REVELIO, and
considering time complexity, REVELIO is the preferable choice
for practical applications, where the slight gap in performance
can be offset by introducing a few additional explanatory
components.

Although factual and counterfactual explanations have op-
posite objectives, we observe that their results are not neces-
sarily contrary. Removing key components from a factual ex-
planation does not always significantly impact the prediction.
For example, in Fig. 3, GradCAM achieves the best factual
explanation result in BA-2motifs (GIN) and BBBP (GAT). In
Fig. 4, on the other hand, the performance drops significantly
from both settings even with the same results from edge
importance. The importance scores generated by FlowX and
REVELIO are specifically trained and adjusted according to the
objective of counterfactual explanation; thus, these methods
tend to achieve better results.

AUC on synthetic datasets. Following the related stud-
ies [50], we conduct experiments to compare AUC on synthetic
datasets with both GCN and GIN. These datasets are generated
with specific motifs, such as a house motif and a cycle motif.
For example, BA-Shapes dataset is created by connecting
house-like motifs to a random Barabási-Albert base graph,
with the node labels indicating their positions within the motif.
An effective GNN is expected to detect the house motif and
accurately predict node labels within the motif. Consequently,
a reliable explanation method should be able to identify the
edges within the motif as the top explanatory edges. A higher
AUC value suggests a closer alignment between the explana-

829

TABLE V
THE AVERAGE RUNNING TIME (IN SECONDS) OF EXPLANATION METHODS WITH GCNS AND GINS. THE RUNNING TIMES OF METHODS WITH AN

ASTERISK (*) ARE EXPECTED TO BE LONGER IN COMPARABLE SITUATIONS. WE HIGHLIGHT THE OVERALL BEST RESULT IN BOLD, AND THE BEST
RESULT WITHIN FLOW-BASED EXPLANATION METHODS IS UNDERLINED.

Method Cora Citeseer Pubmed BA-Shapes Tree-Cycles MUTAG BBBP BA-2motifs

GradCAM 0.18 0.18 0.18 0.18 0.18 0.14 0.17 0.14
DeepLIFT 0.26 0.28 0.27 0.26 0.25 0.22 0.22 0.22
GNNExplainer 87.41 79.76 93.55 83.93 77.77 80.55 78.51 81.85

PGExplainer 116.64
(0.13)

149.88
(0.12)

214.09
(0.14)

74.07
(0.12)

55.27
(0.12)

166.32
(0.09)

160.26
(0.08)

159.95
(0.08)

GraphMask 193.65 188.08 192.65 195.31 184.81 190.72 209.89 196.08
PGMExplainer 92.65 97.03 103.47 109.36 81.59 164.57 162.02 164.82
SubgraphX* N/A N/A N/A N/A 1,173.44 5,632.29 7,083.89 11,173.81

GNN-LRP 221.17 109.25 4,210.53 1,497.13 9.81 52.92 66.41 104.73
FlowX* 312.92 200.70 4,024.77 1,398.58 117.80 169.24 183.22 177.96
REVELIO 108.86 112.35 147.16 132.21 101.37 111.08 108.83 109.43

tion and human understanding. In our evaluation, we focus on
instances associated with motifs and correct predictions. We
then gather the importance scores each methods assigned to
the edges, and calculate the AUC for each instance, using the
motif edges as the ground truth. The average AUC results are
presented in Table IV.

We acknowledge that AUC analysis is a valuable tool for
assessing whether a GNN’s predictions align with expectations
(i.e., for plausibility evaluation). However, AUC is not an
appropriate metric for faithfulness evaluation, as discussed in
recent works [16, 53]. This metric works only on datasets with
ground truth and assumes that GNNs base their predictions
solely on this ground truth. AUC is reliable only under specific,
rigid conditions as discussed above. A method achieving supe-
rior Fidelity might exhibit lower AUC if the GNN itself does
not perform well or make predictions as expected. In other
words, the correlation between these metrics is not straight-
forward. This discrepancy comes from the difference between
faithfulness and plausibility; explanations that are convincing
to humans (or, plausible) are not necessarily descriptive of a
model’s true reasoning process (or, faithful) [16]. For instance,
DeepLIFT achieves the highest AUC on BA-2motifs dataset
with GCN but performs poorly in both factual and counter-
factual explanations. Conversely, both FlowX and REVELIO
excel in explaining the BA-Shapes dataset with GCN. Given
their AUC values and the model’s high prediction accuracy,
we can infer that the GCN’s predictions align with human
understanding. When GNNs are trained on diverse instances
and achieve high accuracy, using AUC as an evaluation metric
becomes more convincing.

C. Sensitivity Study

We select Pubmed and MUTAG datasets to demonstrate the
effectiveness of sparsity constraint parameter α in Eqs. (8)
and (9), with results presented in Fig. 5. Similar results can
also be obtained using other datasets and GNN models as well.
We vary the value of α from 0 to 1 and repeat the experiments
in Figs. 3 and 4. A larger α value means a stronger constraint,
leading to a smaller explanatory subgraph. Therefore, within
a reasonable constraint range, we expect better results with

0 0.05 0.1 0.2 0.5 1

0.5 0.6 0.7 0.8 0.9
Sparsity

-0.03

0.00

0.03

0.05

0.07

Fid
eli

ty-

Pubmed (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.63

0.64

0.65

Fid
eli

ty+

Pubmed (GCN)

(a) Node classification.

0.5 0.6 0.7 0.8 0.9
Sparsity

0.26

0.28

0.30

Fid
eli

ty-

MUTAG (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.25

0.30

0.35

Fid
eli

ty+

MUTAG (GCN)

(b) Graph classification.

Fig. 5. Sensitivity study.

larger α values when dealing with higher sparsity (i.e., smaller
graphs). As shown in Fig. 5, we can manually adjust the
constraint value for the optimal result under different sparsity.
A good constraint value can provide the optimal explanation
results within a certain sparsity range, e.g., the factual expla-
nation result in Fig. 5b. In the experiments from Figs. 3 and 4,
we simply provide the overall best result by a single constraint
value, which still outperforms other baseline methods.

D. Efficiency Study

We report the running times on each dataset by different
methods in Table V. Specifically, we present the training
and inference times for PGExplainer in the format ”training
(inference).” Additionally, SubgraphX is only conducted on
four datasets with only three sparsity values and the FlowX
implementation operates in parallel with graph duplication.
The running times of these methods are expected to be longer

830

GradCAM DeepLIFT GNNExplainer PGExplainer GraphMask

PGMExplainer SubgraphX GNN-LRP FlowX Revelio

(a) BA-Shapes with GCN.

GradCAM DeepLIFT GNNExplainer PGExplainer GraphMask

PGMExplainer SubgraphX GNN-LRP FlowX Revelio

(b) BA-2motifs with GIN.

Fig. 6. Result visualization. Nodes within the motifs are colored differently, as well as target nodes of node classification task. The explanatory edges are
highlighted in dark. Dashed red edges represent the ground truth connections that methods fail to recognize.

in comparable situations. Although we share the running times
of all methods for reference and analysis, it is important to
note that REVELIO should be compared strictly to flow-based
methods. Other methods, such as GradCAM—a white-box
method that requests full access to GNN models and only
provides node/edge explanations—are not directly comparable
to REVELIO due to their substantially different scopes and
capabilities.

Compared with GNNExplainer, REVELIO requires more
running time due to the mask update for message flows. How-
ever, this extra computation enables REVELIO to produce more
fine-grained explanations, which can be further translated into
edge-level insights. We selected GNNExplainer as a baseline
because it shares the same level of access to the target model.
The additional overhead introduced by REVELIO is justified by
the significant performance improvements observed in Figs. 3
and 4, along with the enhanced granularity of the information
it provides. For denser graphs with more message flows,
REVELIO shows substantial efficiency improvements com-
pared to other flow-based methods. The relatively inefficient
results stem from small or sparse graphs and shallow GNNs.
The graphs we tested are relatively small, which results in
T > |F| according to Table II, particularly in Tree-Cycles
dataset. However, in real-world situations, often T ≪ |F|.
In such graphs—Pubmed and BA-Shapes—REVELIO signif-

icantly reduces running time. When we tested datasets with
hundreds of thousands of edges, other flow-based methods
required substantial time and memory, often exceeding GPU
capacity and expecting days to complete. In contrast, REVELIO
completed these tasks in minutes or hours, making it the only
option in practice.

E. Result Visualization

Graph structure. Here, we use the experimental results
conducted in Fig. 3. For each method, we display the target
graphs in Fig. 6, where both explanatory and false negative
edges are highlighted. For flexibility, we report additional ex-
planatory edges identified by each method. The datasets used
are well-established benchmarks in the GNN explainability
domain, containing ground truth structures. We specifically
selected these datasets because they not only allow GNNs to
perform well but also enable explanation methods to achieve
low Fidelity− and high AUC scores. This ensures that the
explanation results align with both the model’s performance
and human interpretability. Both BA-Shapes and BA-2motifs
datasets contain a “house” motif, where the nodes are colored
yellow in Fig. 6. The model’s objective is to determine either
the node’s position within the motif or the existence of the
“house” motif within the graph.

831

0

1

2

3
4

5
6

7

8

9

10

11

12

1314

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31

Fig. 7. The target graph from Fig. 6a.
Top-10 message flows are shown in
Table VI.

TABLE VI
TOP-10 MESSAGE FLOWS FROM FIG. 7 BY DIFFERENT METHODS.

(a) GNN-LRP.

Message Flow Score

31 → 31 → 31 → 28 102.632
29 → 30 → 29 → 28 95.124
30 → 30 → 29 → 28 95.124
30 → 29 → 29 → 28 91.046
29 → 29 → 29 → 28 91.046
28 → 31 → 31 → 28 88.882
31 → 31 → 28 → 28 80.993
27 → 31 → 31 → 28 79.498
28 → 29 → 29 → 28 78.848
27 → 30 → 29 → 28 73.683

(b) FlowX.

Message Flow Score

30 → 29 → 29 → 28 0.008
29 → 29 → 29 → 28 0.008
31 → 31 → 28 → 28 0.006
30 → 29 → 28 → 28 0.006
30 → 30 → 29 → 28 0.006
29 → 30 → 29 → 28 0.006
29 → 29 → 28 → 28 0.006
27 → 30 → 29 → 28 0.006
28 → 28 → 31 → 28 0.006
28 → 29 → 29 → 28 0.005

(c) REVELIO.

Message Flow Score

27 → 30 → 27 → 28 0.681
30 → 30 → 27 → 28 0.650
29 → 30 → 27 → 28 0.641
31 → 31 → 27 → 28 0.640
29 → 29 → 28 → 28 0.631
28 → 29 → 29 → 28 0.628
30 → 29 → 29 → 28 0.626
30 → 29 → 28 → 28 0.626
29 → 29 → 29 → 28 0.620
27 → 27 → 31 → 28 0.606

0

1

2

3

4

5

6

7

8

9

101112

13

14

15

16

17

18

19
20

21
22

23

24

Fig. 8. The target graph from Fig. 6b.
Top-10 message flows are shown in
Table VII.

TABLE VII
TOP-10 MESSAGE FLOWS FROM FIG. 8 BY DIFFERENT METHODS.

(a) GNN-LRP.

Message Flow Score

0 → 8 → 0 → 20 0.039
20 → 24 → 21 → 20 0.032
21 → 22 → 21 → 20 0.032
23 → 22 → 21 → 20 0.032
21 → 24 → 21 → 20 0.032
23 → 22 → 23 → 20 0.031
21 → 22 → 23 → 20 0.031
20 → 23 → 22 → 23 0.029
22 → 23 → 22 → 23 0.029
20 → 23 → 22 → 21 0.029

(b) FlowX.

Message Flow Score

1 → 5 → 18 → 7 0.002
20 → 0 → 15 → 7 0.002
23 → 20 → 24 → 20 0.001
8 → 0 → 15 → 7 0.001
1 → 0 → 15 → 7 0.001
23 → 20 → 24 → 21 0.001
0 → 15 → 7 → 1 0.001
23 → 20 → 21 → 22 0.001
20 → 21 → 20 → 23 0.001
21 → 20 → 24 → 21 0.001

(c) REVELIO.

Message Flow Score

20 → 23 → 20 → 0 0.927
22 → 23 → 20 → 0 0.927
20 → 23 → 20 → 23 0.927
22 → 23 → 20 → 23 0.927
22 → 23 → 20 → 21 0.926
20 → 23 → 20 → 21 0.926
22 → 23 → 20 → 24 0.926
20 → 23 → 20 → 24 0.926
23 → 22 → 21 → 22 0.886
21 → 22 → 21 → 22 0.886

By examining Fig. 6 in conjunction with the results from
Fig. 3, we can conclude that the GNN models have effectively
learned the motif, as these successful methods have attained
the lowest Fidelity− values. However, such visualization
alone is not sufficient to evaluate an explanation method.
This is because the ground truth does not necessarily exist
in practice, models may not make predictions based on what
we as humans think of as ground truth.

Message flow. We report the top-10 message flows by
flow-based methods in Tables VI and VII, using the same
instances from Fig. 6. We observe significant differences in
the importance scores across these methods, which are due to
their underlying mechanisms: GNN-LRP employs a Gradient
× Input scheme (producing arbitrary results), FlowX utilizes
Shapley values (smaller scores are expected), and REVELIO
adopts a mask technique that inherently restricts scores to
the range of (−1, 1). In BA-Shapes dataset, all three methods
successfully identify the edges within the motif. The results
suggest that the prediction is primarily influenced by neighbors
within two hops. The explanation is reasonable because two-
hop information is enough for the model to determine the
position of node 28. In BA-2motifs dataset, FlowX does not
correctly identify important edges. GNN-LRP and REVELIO
both have captured message flows passing through node 0,
even though it is not within the motif. However, this may
reflect the model’s actual prediction process. The graphs are
generated by connecting a random graph and a house motif
with two directed edges, i.e., “0 ↔ 20” from Table VII. It is

possible that the model learns a motif of six nodes, comprising
a house motif connected to an additional node.

VI. DISCUSSION & CONCLUSION

We have observed that REVELIO has more difficulty ex-
plaining graph classification tasks than node classification
ones, likely because the message flows from graph classifi-
cation tasks are much more intricate. Additionally, while our
approach is the best performing flow-based approach, there
is still room for improvement. For example, if one could
identify the top-k most important message flows before using
REVELIO, and only propagate those top-k flow masks, it
would save a significant amount of memory, and improve
running time. We leave this and other potential efficiency
improvements as topics for future work.

In this work, we have presented REVELIO, a novel method
to provide faithful explanations of message flows in GNNs. To
our knowledge, it is the most scalable flow-based explanation
method currently available. We have shown that REVELIO
achieves as much as 28× speedup over the state-of-the-
art flow-based GNN explanation methods and can scale to
graphs larger than those prior works can realistically process.
Additionally, this speedup does not come with a tradeoff in
faithfulness. Our extensive experiments with various GNN
models on both synthetic and real-world datasets demonstrated
the superiority of REVELIO through both quantitative and
qualitative assessments.

832

REFERENCES

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. Sanity checks
for saliency maps. Advances in neural information
processing systems, 31, 2018.

[2] Chirag Agarwal, Himabindu Lakkaraju, and Marinka
Zitnik. Towards a unified framework for fair and stable
graph representation learning. In Uncertainty in Artificial
Intelligence, pages 2114–2124. PMLR, 2021.

[3] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and
Markus Gross. Towards better understanding of gradient-
based attribution methods for deep neural networks.
arXiv preprint arXiv:1711.06104, 2017.

[4] Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Es-
colano, and Nuria M Oliver. Diffwire: Inductive graph
rewiring via the lovász bound. In Learning on Graphs
Conference, pages 15–1. PMLR, 2022.

[5] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun
Wang, Peter Cho-Ho Lam, and Yong Zhang. Robust
counterfactual explanations on graph neural networks.
Advances in Neural Information Processing Systems, 34:
5644–5655, 2021.

[6] Julian Busch, Anton Kocheturov, Volker Tresp, and
Thomas Seidl. Nf-gnn: network flow graph neural
networks for malware detection and classification. In
Proceedings of the 33rd International Conference on
Scientific and Statistical Database Management, pages
121–132, 2021.

[7] Francesco Di Giovanni, Lorenzo Giusti, Federico Bar-
bero, Giulia Luise, Pietro Lio, and Michael M Bronstein.
On over-squashing in message passing neural networks:
The impact of width, depth, and topology. In Interna-
tional Conference on Machine Learning, pages 7865–
7885. PMLR, 2023.

[8] Federico Errica, Marco Podda, Davide Bacciu, Alessio
Micheli, et al. A fair comparison of graph neural
networks for graph classification. In Proceedings of the
Eighth International Conference on Learning Represen-
tations, 2020.

[9] Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang,
Mengnan Du, and Xia Hu. DEGREE: Decomposition
based explanation for graph neural networks. In Interna-
tional Conference on Learning Representations, 2022.

[10] Matthias Fey and Jan E. Lenssen. Fast graph repre-
sentation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[11] Marco Gori, Gabriele Monfardini, and Franco Scarselli.
A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., volume 2, pages 729–734.
IEEE, 2005.

[12] Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang
Li, and Shuiwang Ji. Flowx: Towards explainable graph
neural networks via message flows. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2023.
[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-

tive representation learning on large graphs. Advances in
neural information processing systems, 30, 2017.

[14] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and
Enhua Wu. Vision gnn: An image is worth graph
of nodes. Advances in Neural Information Processing
Systems, 35:8291–8303, 2022.

[15] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh
Singh, and Yi Chang. Graphlime: Local interpretable
model explanations for graph neural networks. IEEE
Transactions on Knowledge and Data Engineering, 2022.

[16] Alon Jacovi and Yoav Goldberg. Towards faithfully
interpretable NLP systems: How should we define and
evaluate faithfulness? arXiv preprint arXiv:2004.03685,
2020.

[17] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong
Chen, Ben Liao, Zhe Wang, Chao Shen, Dongsheng Cao,
Jian Wu, and Tingjun Hou. Could graph neural networks
learn better molecular representation for drug discovery?
a comparison study of descriptor-based and graph-based
models. Journal of cheminformatics, 13(1):1–23, 2021.

[18] Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu
Aggarwal, and Sourav Medya. A survey on ex-
plainability of graph neural networks. arXiv preprint
arXiv:2306.01958, 2023.

[19] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian
Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim,
and Sven Dähne. Learning how to explain neural net-
works: Patternnet and patternattribution. arXiv preprint
arXiv:1705.05598, 2017.

[20] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
2016.

[21] I Elizabeth Kumar, Suresh Venkatasubramanian, Car-
los Scheidegger, and Sorelle Friedler. Problems with
shapley-value-based explanations as feature importance
measures. In International conference on machine learn-
ing, pages 5491–5500. PMLR, 2020.

[22] Wanyu Lin, Hao Lan, and Baochun Li. Generative causal
explanations for graph neural networks. In International
Conference on Machine Learning, pages 6666–6679.
PMLR, 2021.

[23] Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li.
Orphicx: A causality-inspired latent variable model for
interpreting graph neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13729–13738, 2022.

[24] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao
Yuan, Shurui Gui, Haiyang Yu, Zhao Xu, Jingtun Zhang,
Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M
Oztekin, Xuan Zhang, and Shuiwang Ji. DIG: A turnkey
library for diving into graph deep learning research.
Journal of Machine Learning Research, 22(240):1–9,
2021.

833

[25] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei,
Maarten De Rijke, and Fabrizio Silvestri. Cf-
gnnexplainer: Counterfactual explanations for graph neu-
ral networks. In International Conference on Artificial
Intelligence and Statistics, pages 4499–4511. PMLR,
2022.

[26] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao
Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parame-
terized explainer for graph neural network. Advances in
neural information processing systems, 33:19620–19631,
2020.

[27] Qing Lyu, Marianna Apidianaki, and Chris Callison-
Burch. Towards faithful model explanation in nlp: A
survey. Computational Linguistics, pages 1–67, 2024.

[28] Tim Miller. Explanation in artificial intelligence: Insights
from the social sciences. Artificial intelligence, 267:1–
38, 2019.

[29] Christopher Morris, Nils M. Kriege, Franka Bause, Kris-
tian Kersting, Petra Mutzel, and Marion Neumann. Tu-
dataset: A collection of benchmark datasets for learning
with graphs. In ICML 2020 Workshop on Graph Repre-
sentation Learning and Beyond, 2020.

[30] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In International Conference on
Learning Representations, 2019.

[31] Phillip E Pope, Soheil Kolouri, Mohammad Rostami,
Charles E Martin, and Heiko Hoffmann. Explainability
methods for graph convolutional neural networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10772–10781, 2019.

[32] Bharath Ramsundar, Peter Eastman, Patrick Walters,
Vijay Pande, Karl Leswing, and Zhenqin Wu. Deep
Learning for the Life Sciences. O’Reilly Media, 2019.

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.
2005605.

[34] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan
Titov. Interpreting graph neural networks for nlp with
differentiable edge masking. In International Conference
on Learning Representations, 2020.

[35] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi
Nakajima, Kristof T Schütt, Klaus-Robert Müller, and
Grégoire Montavon. Higher-order explanations of graph
neural networks via relevant walks. IEEE transactions on
pattern analysis and machine intelligence, 44(11):7581–
7596, 2021.

[36] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision,
pages 618–626, 2017.

[37] Avanti Shrikumar, Peyton Greenside, and Anshul Kun-

daje. Learning important features through propagating
activation differences. In International conference on
machine learning, pages 3145–3153. PMLR, 2017.

[38] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge,
Shuyuan Xu, Yunqi Li, and Yongfeng Zhang. Learning
and evaluating graph neural network explanations based
on counterfactual and factual reasoning. In Proceedings
of the ACM web conference 2022, pages 1018–1027,
2022.

[39] Jake Topping, Francesco Di Giovanni, Benjamin Paul
Chamberlain, Xiaowen Dong, and Michael M Bronstein.
Understanding over-squashing and bottlenecks on graphs
via curvature. In International Conference on Learning
Representations, 2021.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, 2018.

[41] Minh Vu and My T Thai. Pgm-explainer: Probabilistic
graphical model explanations for graph neural networks.
Advances in neural information processing systems, 33:
12225–12235, 2020.

[42] Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and
Tat-Seng Chua. Towards multi-grained explainability for
graph neural networks. Advances in Neural Information
Processing Systems, 34:18446–18458, 2021.

[43] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph
Neural Networks: Foundations, Frontiers, and Applica-
tions. Springer Singapore, Singapore, 2022.

[44] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning
Gao, Shucheng Li, Jian Pei, Bo Long, et al. Graph neural
networks for natural language processing: A survey.
Foundations and Trends® in Machine Learning, 16(2):
119–328, 2023.

[45] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin
Cui. Graph neural networks in recommender systems: a
survey. ACM Computing Surveys, 55(5):1–37, 2022.

[46] Ping Xiong, Thomas Schnake, Grégoire Montavon,
Klaus-Robert Müller, and Shinichi Nakajima. Efficient
computation of higher-order subgraph attribution via
message passing. In International Conference on Ma-
chine Learning, pages 24478–24495. PMLR, 2022.

[47] Ping Xiong, Thomas Schnake, Michael Gastegger,
Grégoire Montavon, Klaus-Robert Müller, and Shinichi
Nakajima. Relevant walk search for explaining graph
neural networks. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations,
2018.

[49] Zhilin Yang, William Cohen, and Ruslan Salakhudinov.
Revisiting semi-supervised learning with graph embed-
dings. In International conference on machine learning,
pages 40–48. PMLR, 2016.

[50] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka

834

Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in
neural information processing systems, 32, 2019.

[51] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji.
Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 430–438, 2020.

[52] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shui-
wang Ji. On explainability of graph neural networks via
subgraph explorations. In International conference on
machine learning, pages 12241–12252. PMLR, 2021.

[53] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji.
Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and
machine intelligence, 45(5):5782–5799, 2022.

[54] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hang-
hang Tong, and Jian Pei. Trustworthy graph neural
networks: Aspects, methods, and trends. Proceedings of
the IEEE, 112(2):97–139, 2024. doi: 10.1109/JPROC.
2024.3369017.

[55] Muhan Zhang and Yixin Chen. Link prediction based on
graph neural networks. Advances in neural information
processing systems, 31, 2018.

[56] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou
Sun. Gstarx: Explaining graph neural networks with
structure-aware cooperative games. Advances in Neural
Information Processing Systems, 35:19810–19823, 2022.

[57] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning
on graphs: A survey. IEEE Transactions on Knowledge
and Data Engineering, 34(1):249–270, 2020.

[58] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin,
and Philip S Yu. Graph neural networks for graphs with
heterophily: A survey. arXiv preprint arXiv:2202.07082,
2022.

835

