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Abstract—Open-source intelligence exchanges provide a rich
repository of indicators of compromise (IOCs). These IOCs are
used to build detection signatures and blocklists in production
cybersecurity environments as well as prior works. In this
work, we investigate their utility for cyberattack attribution.
To do this, we create a novel system called TRAIL that builds
a knowledge graph of network-based IOC co-occurrences in
cyberattacks, and their relations to other IOCs. After analyzing
4,500 cybersecurity events attributed to 22 different advanced
persistent threats (APTs), the knowledge graph holds over 2.1
million nodes with 7.9 million edges. We analyze the knowledge
graph this system produces using conventional machine learning,
graph analytics, and a graph neural network to quantify the
degree to which APTs leave identifiable clues in their IOCs. Using
the TRAIL method to enrich the IOC feature space, IOCs can
individually be attributed to the APT that generated them with
45% accuracy. When attributing groups of IOCs that made up
cyberattacks, indirect resource reuse alone accurately attributed
82% of samples. When we used both graph topology and feature
analysis and analyzed events with a graph neural network,
attribution accuracy increased to 84%. Finally, we conducted
a 6-month study of new cyber events our models had never seen.
We found that our models continue to achieve similar accuracy
on real-world data to what was observed experimentally, so long
as the database is no more than 1 month out of date.

Index Terms—Big Data applications, Cyber threat intelligence,
Graph theory

I. INTRODUCTION

In 2020, more than 30,000 public and private organizations
found out they had been compromised. An unprecedented
number of private, local, state, and federal agencies had all
fallen victim to one of the most notorious cyberattacks of the
21st century: the SolarWinds incident [1]. Advanced attackers
put a backdoor into the SolarWinds Orion product, which the
company itself shipped to its many clients. The victims of this
attack wanted to know: who did this? Immediately, identifying
the group responsible for this attack was a top priority for the
US government–so important that a cybersecurity advisor was
added to the National Security Council for this task [2]. After
a six-month investigation, the US government [3] as well as
private cybersecurity firms [4] attributed the attack with high
confidence to the Russian threat actor, APT29.

Confidently identifying the threat actor responsible for a
cyberattack (or attribution) is vital for both the government
and the private sector [5]. Unfortunately, this process is both
challenging and time-consuming. Singer and Friedman state
that “perhaps the most difficult problem [in cyber security]
is that of attribution” [6, p. 73]. This is due to the ease of

anonymity skilled adversaries enjoy over the internet [7], and
attackers’ motivations to disguise their true affiliations [8], or
even to emulate and frame other groups [9]. For example,
attackers obfuscate themselves by placing foreign language
strings in their malware binaries [10] or changing their ma-
chines’ internal clocks to disguise their time zone [9]. There
are an uncountable number of tricks that attackers could
employ to disguise who they are in a constant game of cat
and mouse.

On the other hand, there are some artifacts that are diffi-
cult to fake: e.g., logistical resources such as command and
control servers, which are expensive to buy or rent, and time-
consuming to set up. Seeing these resources reused can be
strong support for attribution [9]. Recent approaches that take a
relational view of advanced persistent threat (APT) campaigns
have found that when viewed as a graph, specific shared
resources form dense cliques representing code or resource
reuse [11]. Beyond reusing individual resources, many prior
works have shown that the features of indicators of compro-
mise (IOCs), especially the features of malicious binary files
such as strings in the code, or registry keys the program edits
can be used as evidence to attribute them to their authors [12],
[10], [13], [14], [15], [16].

Unfortunately, network-based IOCs (URLs, domains, and
IPs), the focus of this work, are largely unstudied for APT
attribution. Prior works to classify domain names [17], [18],
[19] and URLs [20], [21], [22] only focus on labelling
them as malicious or benign. Not only is this a gap in the
body of research but ignoring network-based IOCs neglects
intelligence from the largest source of attacker information.
Open-source intelligence (OSINT) exchanges have far more
network-based IOCs than binaries. At the time of writing,
VirusTotal processed 3.21 million new and distinct URLs in
the past 24 hours, compared to just 1.1 million files [23];
AlienVault OTX tracks 26 million domains, compared to only
2 million SHA-256 hashes [24]. In addition to their sheer
volume, network-based IOCs are among the most transparent
IOCs to analyze. File hashes are useful for detecting resource
reuse, but without deeper binary analysis, they only provide in-
formation about exact file co-occurrences in different attacks.
In contrast, network-based IOCs have a rich feature set, if one
takes the time to analyze them. The features of IOCs provide
insight into attackers’ behavioral patterns: where they register
domains, which servers they use, and how many domains
link to the same IP. This information is available through
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OSINT tools, whereas features about files are less commonly
shared. Additionally, many network-based IOCs have direct
relationships to other, potentially novel IOCs. URLs are always
served on domains; domains are always hosted on IPs; IPs are
always part of ASN groups. We will show that network-based
IOCs1, due to the ease of extracting additional features and
additional relationships, can begin to characterize the behavior
of adversaries.

In this paper, we address the APT attribution challenge by
developing a novel system, TRAIL, which leverages OSINT
data to build a rich knowledge graph of attacker information,
which we call the TRAIL knowledge graph (TKG). The TKG
is composed of feature-enriched IOCs that have been observed
in attributed cyber incidents, built entirely using open-source
intelligence2. While there are a plethora of malware datasets
labeled with APTs [12], [25], [26], to our knowledge, the
TKG is the first large dataset that links network-based IOCs to
the threat actors that produced them. This open-source dataset
establishes a baseline benchmark and will enable researchers
to explore new research directions in this area, for example,
APT attribution via feature analysis, graph analytics, or natural
language processing on the raw text of threat reports. This
dataset focuses on attributed events: user reports of cyber in-
cidents listing observed IOCs and the associated threat actors.
Each event is viewed as a node, labeled with the APT the
report was attributed to, and with edges to the IOCs included
in the incident report. As part of the TKG construction process,
the IOCs are passed through an additional feature-engineering
phase to capture more than just resource reuse, to try to relate
the circumstances of their creation to adversary behaviors.
This feature enrichment process reveals edges between IOCs
when they are related in some way. In total, the dataset consists
of 4,512 events, which are attributed to 22 APTs, and a total of
2.121 million IOCs (119K IPs, 354K URLs, 1.641M domains,
and 6K ASNs).

After we have constructed the full knowledge graph, we
can analyze it to study APT behaviors. Specifically, we aim
to answer two important research questions:

• RQ1: How similar are network-based IOCs left by the
same attacker during different events?

• RQ2: How often are resources reused across different
attacks?

To answer the first question, we analyze the IOCs using
traditional machine learning techniques. We find that URLs
can be attributed to the APT that generated them with 46%
accuracy, IPs can be attributed with 38% accuracy and domains
with 29%. Each model performed better than random, which
indicates that individual IOCs do not carry much information
that can be used for attribution, but they do hold some
information. These results support our claim that while APTs
take care to disguise themselves, they sometimes reveal subtle
patterns that manifest in the underlying IOC features.

1For simplicity, we refer to these as “IOCs” for the remainder of the paper.
2Source code and data available at https://github.com/cybermonic/trail

To answer the second question, we view IOCs not on
their own, but in the context of the complete TKG. We use
label propagation through the network to attribute unlabeled
events, given their partially labeled neighbors. This approach
classifies unlabeled events with 82% accuracy. These results
show that though direct resource reuse is rare, because paths
exist through the TKG linking unrelated events attributed to
the same APT, indirect infrastructure reuse does occur. We can
further improve attribution accuracy by taking advantage of the
tabular features of IOCs in conjunction with the topological
features of the knowledge graph. As our initial experiment
showed, the features of individual IOCs do contain valuable
information. To incorporate these features with the relational
data, we train a graph neural network (GNN) [27] to classify
events by their threat actor. This further improved the event
attribution accuracy to 85%.

Finally, we conducted a long-term case study. We evaluated
the ability of our model to attribute new cyber events over
an 8-month period. In these experiments, we found that by
retraining the GNN model monthly, and continuously updating
the TKG, the model continues to achieve similar accuracy on
data at least as recent as one month. We conclude that while
statistical methods should not be used for definitive attribution,
the TRAIL graph and the models we train upon it could be
advantageous tools in cyber incident attribution.

In summary, this work makes the following contributions:
we present the first dataset of IOCs observed in incident re-
ports attributed to threat actors. To the best of our knowledge,
we conduct the first study on attributing network IOCs to
APTs, and the first study on attributing cyber events to APTs
using only network IOCs.

II. BACKGROUND

Indicators of compromise (IOCs) are any information that
can be used to identify a potentially compromised system [28].
Often, IOCs are broken into three types: atomic, computed,
and behavioral [29]. Atomic indicators are things like IP
addresses or domain names, while computed indicators are
data derived from individual items in an incident, such as file
hashes. Behavioral indicators are collections of atomic and
computed indicators grouped in meaningful ways that describe
attackers’ behaviors. Villalón-Huerta et al. [30] argue that
atomic and computed IOCs on their own are of little use in the
long term. A truly advanced persistent threat can avoid reusing
the same IOCs if that is their desire. It is only by grouping
them together and using them to describe attackers’ behaviors
that analysts can produce IOCs with long-term value. For this
reason, we are motivated to store not only the individual IOCs
of events, but their relations to each other, and their various
co-occurrences in a graph structure.

Open Source Intelligence (OSINT) platforms are databases
of publicly available IOCs, descriptions of attacks, and some-
times analyses of IOCs. Generally, sharing cyber threat intel-
ligence (CTI) is beneficial for everyone involved, as attackers
often reuse infrastructure during the same campaign [31].
However, this process has drawbacks: sometimes the data
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(a) TRAIL System Architecture for building the cyber-events knowledge graph

(b) Ways of analyzing the TKG

Fig. 1: Full system overview. The TRAIL system parses and enriches open source threat intelligence to create the TRAIL
Knowledge Graph (TKG). We then then analyze the TKG with three different approaches: classical ML, label propagation,
and graph neural networks.

shared is not reliable [32] owing to the anonymous nature of
CTI sharing platforms. Even worse, there is often a focus on
quantity over quality with CTI sources [33] so it is important
to analyze IOCs shared rather than blindly add them to
blocklists.

III. OVERVIEW

In this section, we provide an overview of the TRAIL
system, and how we analyze the knowledge graph it produces.
Figure 1a illustrates the full system architecture to build
the TRAIL knowledge graph. Using public threat intelligence
repositories, we collect data in the form of raw JSON files
that contain IOCs associated with incident reports, and the
threat actor to whom the report is attributed. Next, we use
open-source tools to analyze each IOC reported in the event
and generate its features. Often, this leads to the discovery
of additional IOCs related to those reported in some way
(e.g., IPs discovered while analyzing a domain). As part of
the enrichment process we request additional analysis on those
IOCs to track as many features as possible. The original event,
the reported IOCs, and any secondary IOCs we discovered
during enrichment are then converted into an attributed graph
according to the schema shown in Figure 2. Each event is
represented as a central node labeled with a threat actor. This
event node is connected to all IPs, URLs, and domains that
were listed in the threat intelligence report. We also create
edges between the reported IOCs and their secondary IOCs
discovered in the enrichment process. Finally, the subgraph
represented by the event node and its primary and secondary
IOCs is merged into the TRAIL Knowledge Graph (TKG).

As illustrated in Figure 1b, in this work, we investigate
three approaches to analyzing the TKG: traditional machine
learning, traditional graph analysis, and graph neural networks.
Traditional machine learning (ML) only considers the features
of individual IOCs and ignores their relationships. These
models are optimized to predict the threat group that produced
any single IOC. Traditional graph analysis ignores nodes’
features, and only considers their relationships. We use a
process called label propagation (LP), where event nodes in
the TKG send a vector representing their label to each of
their neighbors. This process repeats iteratively; every labeled
node sends its label to its neighbors. This results in a vector
on each node that corresponds to its distance from every
labeled event node. This vector represents the probability
distribution function for an event’s attribution. Lastly, graph
neural networks (GNNs) take node features and relationships
into consideration when making predictions. Using the k-hop
neighborhood of the event, and the features of nodes in that
subgraph, the GNN will produce a probability distribution
function of which threat actors are most likely associated with
a given event. In the following sections, we will discuss the
knowledge graph construction and analysis in greater detail.

IV. TRAIL KNOWLEDGE GRAPH CONSTRUCTION

The TRAIL knowledge graph (TKG) is a graph of IOCs
involved in various OSINT incident reports related by their
co-occurrence in cyber events, and their operational relation-
ships. For simplicity, we refer to the attributed cybersecurity
incidents shared on these platforms as events. Each event is
associated with several IOCs that the analysts who reported it
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wished to share and is associated with a single threat actor.
Each IOC may have multiple features, depending on what kind
of IOC it is. All nodes and relations are stored in a neo4j
graph database [34]. In total we collected 4,512 events, each
of which had, on average, 190 associated IOCs. The events
collected were created between February of 2015 and May of
2023. In the rest of this section, we will detail our methodology
for building this knowledge graph and generating features for
each IOC.

A. Data Collection

We use the AlienVault OTX API to search for events tagged
with APT names and their aliases. We selected OTX because
it was the largest database with a public API we could find, and
it already aggregates many existing MISP feeds [35]. While in
this work, we only check AlienVault OTX for events, TRAIL
could easily be extended to parse the responses from other
data providers. As a precaution, if an event had multiple valid
APT aliases as tags, it is ignored unless the tags all map to
the same APT. This is to avoid downloading IOC dumps that
are unrelated or relate to multiple incidents. At the end of this
process, we have a list of event IDs and the APTs they are
associated with. If an APT had at least 25 events attributed to
it, we included the events in the TKG.

The next stage of the process is to get features for each
IOC and to link the IOCs into an attributed graph. Each event
contains a list of IOCs and their types, but to extract further
information about each IOC, we request an analysis of it,
either from OTX or another open-source tool (such as dig or
passive DNS). This returns a great deal of information about
each IOC, both in terms of its relations to other IOCs and in
terms of its individual features; we will discuss the specifics of
these features and relations in the following subsections. The
output of the IOC analysis will often contain more IOCs. For
example, using dig on a domain returns a list of IP addresses
(A records); likewise, using dig on IPs yields records linking
IPs to domains and ASNs. These are what we refer to in
Figure 1a as “Secondary IOCs”. We collect and analyze these
as well, though we do not directly associate them with events.
This process of IOC discovery can be repeated indefinitely,
but due to time and space constraints, we limit it to two
hops from the initial event. Even with this constraint, in the
resulting graph, 75% (1.581 out of 2.125 million) of nodes
are secondary IOCs. This enrichment process is part of what
makes the TKG so useful. Many tools already exist generate
features for IOCs, but TRAIL goes beyond this and finds
relationships too. While IOCs may not be directly reused, we
will show that their related infrastructure sometimes is.

B. Feature Extraction

While it is useful to know which IOCs have been used by
which APTs in the past, adversaries will endeavor to obfuscate
their activities if they wish to remain obscured. To this end, a
sneaky APT will try to use unique resources for attacks that
cannot be traced back to them, should this be their desire.
However, it is our hypothesis that either because details are

overlooked, resources are being recycled, or for any other
number of reasons, features more subtle than exact IOCs may
get reused. In this work, we wish to quantify how often the
traits, e.g., where domains are registered, the configuration of
web servers, etc., of IOCs are reused by the same APTs.

While the feature set for domains and URLs overlaps with
the prior works on lexical and DNS analysis, we add additional
data about the servers that host URLs, and the files hosted at
each address. We also track the country code, top-level domain
(TLD), and whether the domains have an NXDOMAIN record–
meaning it has been deactivated since being reported.

In total, we extract 507 features for IPs, 249 categorical
features for country codes, and a one-hot vector for which if
any of the top 265 IP issuers granted the IP address. URLs
have the most features: 1,517 in total. A one-hot vector with
106 categories for the file type hosted at the URL address, 21
categories for the file class, 68 for the HTTP response code, 12
for the encoding method, 944 for the type of server used, 50 for
the operating system run on that server, 183 possible services
that could be running on the server, the top 100 TLDs, and
10 lexical features. Lastly, domains have 115 features total:
the first 100 dimensions are a one-hot vector of the TLD, the
next 9 represent the count of unique DNS records of each
type captured in passive DNS, then, a single feature for if an
NXDOMAIN record was found, and 4 lexical features.

Prior works such as Thin et al. [18] and Lui et al. [17] have
shown that lexical features of domain names and statistical
features in DNS records can be used to classify domains
as malicious or benign. Likewise, there are numerous prior
works that aim to classify URLs as malicious or benign using
purely lexical features [20], [21], [22]. IP addresses have a
dearth of features on their own, which may explain the lack
of prior work in classifying them. Nonetheless, we track as
many features as we can.

The most likely reason prior works tend to focus on lexical
features is that they are inexpensive to generate. They are
immediately extractable from the text of a simple list of
IOCs. In addition to this ease of access, they can hint at
adversaries’ tactics, techniques, and procedures (TTPs). For
example, domains’ length and number of digits can be used
to identify which domain generation algorithm was used, if
relevant, linking domains to malware families. Other features
like period count, can indicate TTPs such as subdomain
hijacking. However, other categories of features such as ge-
ographic data, information about the adversary’s servers, and
as Thin et al. [18] identify, DNS records, can also hold vital
information. To address this problem, after building lists of
IOCs associated with cyber-attacks, we use additional OSINT
sources to analyze them.

Both IP addresses and domains can be queried in passive
DNS databases that provide historic DNS records for them.
In the case of IP addresses, this yields domains that have
historically been linked to them. In the case of domains,
passive DNS can provide IP addresses in the form of A
records, and other domains if CNAME redirect records exist.
We collect all passive DNS records for both kinds of IOCs
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Fig. 2: IOC Graph Schema

to use as which we use both as relational data during the
graph construction phase (domain to IP edges) as well as node
features (counts of unique record types). For IP addresses, we
also use open-source IP lookup services to get the country
code associated with the address, as well the ASN group it
belongs to, and its issuer. Finally, for URLs, simply cURLing
them, and analyzing the server header provides a great deal
of data if the URL is still alive. In practice, the output of all
these tools is archived by the OTX database, so we simply
query their APIs to find these features and then convert them
to vectors.

C. Graph Construction

Figure 2 shows the complete schema of possible relation-
ships in the TKG. The most important relation is the one
between the event node and IOCs. The event node represents
the threat report itself. Its only feature is the APT with which
it is associated. The event node has an edge from itself to any
URL, IP, or domain that appears in the report it represents.

The IP analysis reports yield an ASN and a list of DNS
A records. ASNs are added as additional nodes in the
graph and are connected by an edge to the IP address.
The DNS lists function as the second-order edges between
IPs and domains. Domains and URLs have an obvious

TABLE I: Relations captured during dataset construction

Source Edge type Destination Description

Event InReport
IP If an IOC appears in an incident report

in an open source intelligence sharing
platform

Domain
URL

IP A Record Domain Passive DNS captured a resolution from
this IP to a domain name at some point
in the past

InGroup ASN The ASN containing the IP address.
This is contained both in the passive
DNS output, and can be found using
tools such as dig or wholis

URL ResolvesTo IP The IP address associated with the URL
obtained via nslookup and passive
DNS records of the domain hosting the
URL

HostedOn Domain The domain the URL is hosted on. Ob-
tained via lexical analysis of the URL

Domain ResolvesTo IP A resolution from this domain to an IP
address obtained either by nslookup
or A records in passive DNS

Fig. 3: Ego-net around an APT28 event in the TKG.

relation observable without analysis: a particular URL is
hosted at a domain address. For example, if the URL
hxxp://threebody[.]cn/trisolaris.php was
provided as an IOC, the TKG would automatically create a
node and request analysis for the domain threebody[.]cn
and create a relation between them. The analysis reports for
URLs also include the IP address it resolves to. Likewise,
the DNS records returned from domain analysis contain A
and AAAA records which also resolve to IP addresses. This
relation is represented by an edge between the IP and URL or
domain in the TKG. Table I contains a complete list of every
edge type, and if they are derived, how they are obtained.

An ego network, or ego-net, is a graph focused on a single
node (called the “ego”), such that every other node in the
graph (called the “alters”) has a link to it [36]. A collection
of cyber events can be thought of as a series of ego-nets
where each event is an ego, and the IOCs reported therein
are the alters. By applying further IOC analysis, we expand
these ego-nets into richer graphs with additional edges that
can connect alters, or discover new IOCs, potentially creating
new paths between events. As an example, consider Figure 3,
which shows the ego-net formed by a single event analysts
attribute to APT28. Using this event as an example, the
IOCs 1.0.36[.]127, v5y7s3[.]l2twn2[.]club, and
hxxp://sfj54f7[.]17ti3sk[.]club/?H3%2540ba
&d are all present in this report. After analyzing the IP address,
we find it is associated with China, and its estimated latitude
and longitude, but there is no information about its ASN or
issuer. Using passive DNS, we find that the domain has a
single A record from 2021. This gives us a relation from the
domain to the IP address it resolved to, a new IOC to look
up, and features for first and last seen dates by the passive
DNS service. Finally, checking the cached response headers
of the URL reveals that it was running on an nginx server at
the time it was first reported and that the content type was
text/html encoded using gzip. In total, this subgraph has 239
related IOCs: 94 IPs, 95 domains, and 50 URLs.

We find that 85% of event nodes are two hops away from
another event node, meaning 85% of OSINT reports share at
least one IOC with at least one other report. In total, the final
graph contains 4,512 events attributed to 22 APTs, 2.1 million
IOC nodes, and 7.9 million edges in total.
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V. THE TKG DATASET REPORT

In this section we will describe the dataset we generated
according to the process described in Section III. Beyond
simply collecting IOCs and generating features for them, we
link them together to form a large knowledge graph. In this
section, we study the properties of the knowledge graph that
is formed by this data and the relations that IOCs have with
one another.

Table II shows more detailed information about the knowl-
edge graph. Even though the number of events per APT can be
small, we have a detailed picture of how these events overlap,
and when they share resources. Also included in the table is the
column “1st Order”, meaning the number of IOCs that were
directly reported in the events. Here, we see that almost 75%
of the nodes in the graph were found during the enrichment
process described in Section III.

Of the first-order IOCs, there is an additional concept of
“Average Reuse”, which measures how many distinct events
contain a given IOC. Most IOCs only appear in one or two
reports, as Figure 4 illustrates; however, a few appear in many.
The most frequently repeated IP addresses and domains were
those of Cobalt Strike-related C2 servers, supporting our claim
that expensive infrastructure is likely to be recycled during the
same campaigns. The most frequently repeated URLs were
links to Chinese SSL certificates. Further analysis shows these
certificates were related to WannaCry ransomware.

The TKG is strongly connected, with the largest connected
component containing 2,123,737 (99.94%) of the nodes in the
graph. We also note that when we analyze the subgraph of
only first-order IOCs, the number of connected components
increases from 161 to 477. The diameter of the largest com-
ponent also decreases from 23 to 20 hops. This shows that
the additional enrichment step reveals previously unknown
links between IOCs, providing value to the analysis process.
It is also interesting to note that the second and third largest
connected components are both single FIN11 events, and the
fourth and fifth largest connected components were both pairs
of overlapping APT38 events. This suggests that nodes in the
graph are well-clustered and that the shorter a path that exists
between two events, the more likely they are to be attributed
to the same APT.

VI. DATA ANALYSIS METHODOLOGY

In RQ1 we ask to what extent IOCs in different cyber
incidents are similar if the same APT generated them. IOC
similarity is measurable through statistical analysis of their

TABLE II: Node and edge counts in the TKG

Type Nodes Edges Avg. Degree 1st Order Avg. Reuse

Events 4,512 857,174 190.0 N/a N/a
IPs 119,194 2,936,002 24.63 51.85% 2.944
URLs 354,138 996,685 2.814 93.21% 1.253
Domains 1,641,194 3,026,628 1.844 10.65% 1.497
ASNs 6,028 99,873 16.57 N/a N/a

Total 2,125,066 7,916,362 3.725 26.66% 1.513

Fig. 4: IOC Reuse by IOC type.

features. Thus, to answer the research question, we apply
traditional ML techniques to IOC features. In RQ2 we ask
to what extent resource reuse can be used to attribute attacks
to APTs. To measure this, we look to the graph structure
of the TKG. We will show that resource reuse manifests in
the graph as paths between events, where shorter paths entail
more direct resource reuse. Graph neural networks incorporate
both statistical analysis of IOC features and graph structural
analysis of the TKG. So, a GNN’s effectiveness at positively
attributing events will help answer both research questions. If
the GNN is effective, it demonstrates both IOC similarities
and resource reuse between attacks. In this section, we will
describe the techniques used to analyze the TRAIL dataset:
traditional ML, graph structural analysis, and graph neural
network analysis. Each approach takes a list of IOCs, or a
subgraph of the TKG as input and aims to predict the most
likely APT associated with the attack artifacts.

A. Traditional ML

We explored three traditional classifiers: Neural Networks
(NN), XGBoost (XGB) [37], and Random Forest classifiers
(RF) [38]. We selected these three classifiers because they
are adaptable to many classification problems. To strengthen
our model’s robustness and curtail overfitting, we employed a
5-fold cross-validation strategy. This accentuates the model’s
robustness and generalizability.

Preprocessing: For preprocessing, we first addressed the
issue of imbalanced data. Specifically, for domains, URLs,
and IPs, we applied the SMOTE [39] technique for over-
sampling. Additionally, for domains, we engineered a new
feature named ‘active period‘, which was the difference
between the ‘last seen‘ and ‘first seen‘ timestamps. The
final preprocessing step was to ensure all features underwent
standard scaling. Using the training set as a basis, we find the
mean and standard deviation, and rescale all of the data such
that the mean is 0 and the variance is 1.

Neural Network: The neural network architecture uses an
input layer of 2048 neurons, and four hidden layers with 1024,
512, 128, and 64 neurons, respectively. Between each layer,
there is an ReLU activation and a batch normalization layer.
Additionally, there is a dropout layer with a rate of 50% in
the first three hidden layers for regularization. The output layer
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has a neuron count equivalent to the number of classes, 22,
and uses softmax activation. The model is optimized using
cross-entropy loss.

XGBoost and Random Forest For the XGBoost classifier,
we selected the multiclass soft-probability learning objective.
For both XGBoost and Random Forest, the hyperparameters
were optimized using the Tree of Parzen Estimators (TPE)
method provided by Hyperopt [40].

B. Label Propagation

As has been shown by [11], APTs will often reuse difficult-
to-recreate pieces of infrastructure such as Command and
Control (C2) servers. Graph traversal analyzes the way IOCs
overlap between cyberattacks as APTs reuse resources and
attempt to use these overlaps to attribute events.

Formally, a graph, G, is an ordered pair of sets, {V, E}, such
that the set of edges, E is a subset of V(2), pairs of nodes in
V . An attributed graph is a graph with a function f : V → Rd,
so each node is associated with a vector of attributes, or node
features. We represent the IOCs as a graph of related nodes,
where some subset of those nodes are attributed events.

For a given event node e if a path exists, P = {e, n1, ..., nk}
where (e, n1) ∈ E and ∀ 0 < i < k, (ni, ni+1) ∈ E ,
we assume that each node in the path is related to the
APT associated with e. Nodes one-hop away from e are
suspicious by definition, whereas those more distant from e
are less suspicious. Our approach aims to capture each node’s
level of association with each APT by capturing its average
distance from each event node. We accomplish this using label
propagation [41].

Formally, this method can be described as follows: let ℓ :
E → A be a function that maps some subset E ⊆ N to a set
of labels A = {a1, ..., am}. In this case, E is the set of event
nodes, and A is the set of APTs they are associated with. Let
F0 = |N |×|A|, be a one-hot encoded matrix of labels, where
rows corresponding with events in E are labeled, and others
are zero. Let A be the adjacency matrix of the graph. Then the
nth iteration of label propagation can be described recursively
as

Fn = D
1
2AD

1
2Fn−1 (1)

where D is the diagonal matrix of the degree of each node.
In practice, this is accomplished using message passing over
an edge index [42]. Let Z = FN , the output of the final
iteration of Equation 1. To convert this into a probability
distribution, we calculate the softmax of each nonzero row.
This produces node representations that contain information
about each node’s distance to a given event node, as well as
how many paths exist to each event node.

A significant limitation of label propagation for attribution
is that if an event contains IOCs that have never been observed
before, the labeled events in the TKG are unreachable. Conse-
quently, these nodes remain unattributed. Label propagation
provides several advantages over traditional ML approaches,
however. It is inductive, meaning it can propagate labels that it

has never seen before, unlike ML approaches which can only
predict classes they have been trained to predict. Additionally,
label propagation automatically ignores low-information IOCs.
For example, if an APT uses a common public IP address,
this may have paths to several unrelated events. This means
the node has very little information to propagate; the more
unrelated events connected to this node, the closer the label it
propagates is to a uniform distribution, which in turn lowers
the signal for noisy, unrelated labels.

C. Graph Neural Networks

To incorporate the benefits of both aforementioned methods,
we use GNNs [27]. GNNs are a natural extension of the
label propagation method described in the previous subsection.
Rather than using just relational information about nodes, we
also provide the model with feature information, X. This
information is passed through a learnable non-linear function.
Mathematically, this is expressed by changing Equation 1 to

H(ℓ) = σ

(
D

1
2AD

1
2H(ℓ−1)W(ℓ) + b(ℓ)

)
(2)

where H0 = X, σ(·) is a nonlinearity function such as
ReLU, and the variables Wℓ and bℓ are trainable parameters.
This is the characteristic equation for graph convolutional
networks [43], which require the entire graph to be held
in memory, and to calculate representations for each node.
However, due to the size of the TKG, it is more efficient
to use GraphSAGE [44]. Rather than computing Equation 2
for every node, GraphSAGE only computes it for nodes of
interest. Formally, the new equation is defined as

h(ℓ)
v = σ

(
1

|N (v)|
∑

n∈N (v)

h(ℓ−1)
n W(ℓ) + b(ℓ)

)
(3)

where N (v) represents the one-hop neighbors of node v.
To improve stability, after the aggregation step in Equation 3,
node representations are also L2 normalized,

h
(ℓ)
v

∥h(ℓ)
v ∥2

. (4)

In this work, we implement a GraphSAGE model with
output dimension |A|. We train it to classify a subset of
unlabeled event nodes E using their k-hop neighborhoods as
input. The output forms a probability distribution function of
the APT that each event is likely associated with. To this end,
we optimize the model using cross-entropy loss on the softmax
of its final layer.

From the success of previous GNN-based IOC analytic
techniques such as [45], we expect this to capture useful infor-
mation about IOCs, but there is an issue: each kind of IOC has
a different dimensionality. URLs, IPs, and domains are rep-
resented using 1,516, 506, and 115 features respectively. One
solution to this is to simply pass the features through linear
layers, and project them all into the same dimensions, but this
is suboptimal. To address this problem, we use autoencoders
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(AEs) [46], which project IOC features into low-dimensional
space for easier processing, then attempt to reconstruct the
original inputs, ensuring information is preserved during the
encoding process. This requires training two separate models:
an encoder, f(·) and a decoder g(·), both implemented with
a two-layer feed-forward neural network. Both have hidden
layers with 512 dimensions, and the encoding dimension is
64.

To train these additional networks, we keep track of an
additional reconstruction loss function:

LR = ∥X− g(f(X; θf ); θg)∥2. (5)

We create three separate encoder-decoder modules to inde-
pendently project URLs, IPs, and domains to equal-dimension
vectors that are fed into the GraphSAGE module.

VII. APT ATTRIBUTION RESULTS

A. Individual IOC Attribution

We have endeavored to capture more than simplistic lexical
features in our dataset creation. Our choice of features aims
to capture adversary behavior–what kind of servers they use,
their IP address providers, domain registration patterns, and
more. Although IOCs are transient, APT behaviors remain
more consistent, offering a robust basis for attribution [30].
To answer RQ1, the efficacy of our models will measure how
well the features we selected reflect APT behaviors, and how
consistent APT behaviors are, if at all.

Experimental setup. In our experiments, we measured
the performance of XGB, RF, and NNs for IOC attribution.
Given the distinct feature set for each IOC type—domains, IPs,
and URLs—we trained each model individually. We limited
training to first-order IOCs linked solely to one threat actor,
ensuring clear labels, and excluding multi-labeled IOCs. This
also ensured only event-related IOCs were included, avoiding
benign secondary IOCs (e.g., nameservers).

Table III presents the average results from five-fold cross-
validation for each model across each type of IOC. We
evaluate the models using the metrics accuracy (Acc.) and
balanced accuracy (B-acc.), the latter being especially relevant
given the imbalanced nature of our dataset.

Observation #1: While individual IOCs can be attributed
at a rate better than random, they yield limited information
on their own.

We observe that the NN displayed the best performance

TABLE III: Individual IOC attribution for different models
(Average over 5-folds)

Model IP URL Domain

Acc. B-acc. Acc. B-acc. Acc. B-acc.

XGB 0.3174 0.1975 0.4590 0.2531 0.2894 0.1609
NN 0.3796 0.2260 0.3395 0.1742 0.1087 0.1004
RF 0.2431 0.1708 0.3419 0.2193 0.1297 0.1248

in the attribution of IPs, with an accuracy of 37.96%. This
suggests that the inherent non-linearity of NNs might be more
adept at capturing patterns within the sparse IP features.

However, when attributing URLs and domains, the NN’s
performance diminishes compared to the other methods. XGB
and RF, while trailing the NN in IP attribution, performed
competitively in URL and domain attribution. Specifically,
XGB achieved a 45.90% accuracy for URLs, outperforming
both the NN and RF. Interestingly, URLs emerged as the most
accurately classified IOC. This could be attributed to their high
degree of features, making them the most descriptive IOC type.
Additionally, as suggested by Villalón-Huerta et al. [30], APT
behavior is a better indicator than atomic IOCs alone. URLs
carry a high degree of information about attacker tools, and
reveal information about their server, its operating system, and
the file encoding methods–essentially capturing APT behavior.

We must concede that for each IOC, the balanced accuracy
was low. Even for URLs, it was just over 25%–not high
enough for reliable use. However, while the attribution of
individual IOCs offers some insights into attackers’ patterns,
attacks are represented by large groups of IOCs, not individ-
ual ones. Considering IOCs in isolation overlooks important
correlations between co-occurring IOCs, or important links to
other observed attacks.

B. Event Attribution

In the second research question, RQ2, we proposed con-
cerned using the groups of IOCs reported in events to attribute
the overall incident. In this section, we will show how we do
this by formulating event attribution as a node classification
problem within a graph. Here, we will describe how we used
traditional machine learning, graph traversal, and graph neural
networks to predict which APT was attributed to a cyberattack
given the IOCs observed in that campaign, and the edges in
the TKG.

Experimental Setup. We train each model using stratified
k-fold validation on disjoint subgraphs of the TKG. To evalu-
ate traditional ML models, we classify each IOC in an event
individually. Then, the mode of their predictions is used as the
final output. For graph traversal, we masked out the labels
for 1

k of the events in the graph. Then we iteratively perform
label propagation as described in Equation 1. We report the
results of 2, 3, and 4 layers of label propagation, which are
represented as LP 2L/ 3L/ 4L respectively in Table IV. We
tested up to 10 layers, but the results did not improve after 4
propagation iterations.

For GNNs, the procedure is similar. The training set is split
into a training and validation set, and the model is optimized
on how well it can predict the labels of events in the training
set with the knowledge of the labels in the validation set.
During validation, the event nodes in the training set are given
labels, and the validation nodes labels are masked. Finally,
during testing, only the event nodes in the test set have their
features masked. The hyperparameters selected are those that
had the best results on the validation sets before considering
the test sets. Each GNN is trained with a learning rate of
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TABLE IV: Event attribution accuracy of various approaches
(Average over 5-folds)

Model Acc B-Acc.

XGB 0.4663 ± 0.0055 0.2911 ± 0.0087
NN 0.2622 ± 0.0095 0.1617 ± 0.0097
RF 0.6878 ± 0.0068 0.5491 ± 0.0061

LP 2L 0.7589 ± 0.0059 0.7434 ± 0.0061
LP 3L 0.7934 ± 0.0053 0.7660 ± 0.0054
LP 4L 0.8236 ± 0.0061 0.7734 ± 0.0057

GNN 2L 0.8338 ± 0.0079 0.7793 ± 0.0086
GNN 3L 0.8396 ± 0.0101 0.7860 ± 0.0131
GNN 4L 0.8405 ± 0.0113 0.7922 ± 0.0098

0.0001, has 512 hidden dimensions, and uses 64-dimensional
encodings for the IOC input features. All models are trained
and evaluated on the same data split.

Observation #2: The graph structure is crucial for
attributing attack campaigns, and IOC features further
improve attribution accuracy.

Label propagation achieved high metrics; however, it re-
quired traversing deeper into the graph than did GNNs to
achieve the same level of accuracy. Note that LP 2L is a
measure of direct resource reuse. The only two-hop paths
that propagate labels are of the form ei → IOC → ej .
Results from any 2L model are equivalent to the results if we
did not apply the extra enrichment process while collecting
the data. As additional layers are added, the importance of
secondary IOCs becomes more apparent. Paths between events
with length greater than 2 necessitate the use of secondary
IOCs. For example, paths like ei → IP → domain → ej are
common, and only available because of secondary IOCs. The
2L LP model can also be used as a baseline to determine the
difficulty of the dataset. Though it is not the only step a human
analyst would take to attribute an event, direct resource reuse
can be a high-confidence indicator used during the attribution
process [31]. LP 4L is notably the only model that takes
advantage of the ASN nodes in the graph. Any path through
an ASN node that starts and ends with an event must be of the
form, ei → IPn → ASN → IPm → ej , meaning it would
take 4 propagation steps for the information to transmit. This
extra possible path between events improves LP significantly,
though it still is not as effective as even shallow GNNs.

GNN 2L, 3L, and 4L are analyzing the same subgraphs as
LP 2L, 3L, and 4L respectively. The large increase in accuracy
means the additional neural network parameters are learning
from the features. We observe that even the 2L GNN strongly
outperforms the deepest LP models. This indicates that the
linear combination of resource reuse achievable by humans
is not sufficient to classify more difficult events via their
IOCs. These results show that nonlinear relationships between
IOC features and the specific paths by which information
flows between events are necessary information to consider

for accurate attribution. These results also suggest that IOC
features allow models to be more discerning of APT classes
with less support in the dataset compared to label propagation,
which is better suited to classify nodes that are part of larger
structures within the graph.

C. Case Study

To further illustrate the utility of the TRAIL knowledge
graph and the various ways it can be analyzed, we consider
a case study: attempting to attribute a cyberattack from the
wild. Using an attributed AlienVault report that was created
on Sept. 28th, 2023, four months after the creation of the TKG,
we investigate the performance of our graph-based attribution
methods. The report describes an APT38 phishing campaign
with 10 associated IPs and 10 domains.3. After enriching the
report, we found 19 additional IP addresses and 2,629 domains
from passive DNS. This brings the total count of IOCs from
20 to 2,668. After the new report is merged into the TKG, its
2-hop neighborhood contains 9,405 total IOCs.

Model Performance. After the event is merged into the
TKG, there are 14 attributed events 2-hops away and 24
attributed events 3-hops away. Using label propagation, we
can easily attribute this event to APT38, as all its neighbors
are also APT38 events. However, in a more realistic setting, we
may not know its neighbors’ labels either; we would simply
understand that these events are part of a related, but as of
yet unattributed campaign. So instead, we assume that the
labels of these events are unknown, and we only have the
features and the enriched subgraph. Without any knowledge
of the neighbors’ labels, a GNN trained on the full TKG
correctly predicted the event should be attributed to APT38
with 48% confidence. Allowing the model to see neighbors’
labels increases this to 88% confidence. These results further
confirm the utility of the TKG.

Observation #3: IOCs and their features, especially when
viewed as a group in the knowledge graph, describe APT
behavior well enough to be used for attribution.

Figure 5 shows the 2-hop subgraph of where this new event
intersects with the existing TKG. 40% of the domains and

3https://otx.alienvault.com/pulse/651a6bf5c2ef0eb8b7bda145

Fig. 5: All events 2-hops from the new node. Note: every event
pictured is attributed to APT38 (new event outlined in black)
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Fig. 6: All events 3-hops away from the new node (new event
outlined in black)

20% of the IPs were reused in other APT38 events. Zooming
out to 3 hops away in Figure 6, we observe 22 APT38 events
compared to just a single FIN11 event, and a single TA511
event. These other events are both linked by a single IP address
that resolved at one point to URLs and domains involved with
their respective attacks. The APT38 events, on the other hand,
have far more direct links, either because URLs hosted on the
same domains seen in this new attack were previously used,
or because they too shared an IP address. We are confident
this resource reuse points to a likely APT38 attribution.

In the threat report, the analysts cite the initial method
of compromise–phishing over LinkedIn (which was also the
method of compromise in many of the 2-hop events in
the TKG)–and specifics about the binary files used by the
adversary as their method of attribution. They mention that the
network IOCs are compromised, legitimate servers, and refer
to this as a “typical, yet weak-confidence behavior, of Lazarus
[(APT38)]” [47]. They do not mention, however, that these
IOCs were reused in other attacks as part of a larger campaign
called “Operation DreamJob” [48]. With our method, if any
one event in the operation were attributed, either by malware
analysis as was done by this report, or by our methods, we can
immediately spread this attribution through the entire TKG,
attributing the cluster of events that represented the campaign.

Months-long Investigation In the entire month of June,
2023, there were 22 unique reports attributed to an APT we
tracked in the TKG. Without retraining, or updating the TKG,
we evaluate the GNN model on these unseen reports. We
show the confusion matrix of the results in Figure 7. There
were 10 reports attributed to APT38, 6 attributed to APT37, 5
attributed to KIMSUKY, and 1 attributed to APT27. The GNN
model accurately attributed 80% of the APT38 events, and
80% of the KIMSUKY events, however it struggled to correctly
attribute the other groups. The only APT27 event was confused
with another Chinese APT group, though their behaviors and
targets are dissimilar. All 6 APT37 events were misclassified
as other North Korean groups. However, this may be because
North Korean groups have such overlap that they often all
reported as Lazarus (APT38) [49], which accounts for 4/6
of the misclassifications. For this reason, we are confident
in our model’s ability to correctly attribute novel events with
reasonable accuracy. We also note that the confidence level

Fig. 7: Confusion matrix for the GNN models attributing new
events for the month of June 2023.

for the false positives was always less than 0.8, while the true
positives were always > 0.99. Not attributing events unless the
model’s confidence surpasses some threshold would improve
the models’ rate of misclassification, and make it more robust
to new APTs it was never trained on. We leave this as a topic
for future work.

We further investigate the performance of our model for
the remainder of the year 2023. We first measure it by
independently evaluating all reports from each month using
the same pre-trained model from the previous section. As is
evident from the growing gap in evaluation metrics present
in Figure 8, the more out-of-date the model is, the more it
benefits from retraining. At the same time, we also evaluate
a GNN that was iteratively fine-tuned using data from the
previous month to retrain before evaluating on the next month.
The gulf between the performance of an up-to-date model
and the old model increased by 3.5% for each additional
month that passed. Clearly in a realistic setting, the GNN
should be retrained frequently to avoid this drift in quality.
In our experiments, training the GNN from scratch on only
CPUs took an hour. Fine-tuning it with only the previous
month’s events took less than five minutes (<10 epochs before
convergence), so the cost is very low.

Fig. 8: Performance degradation as TKG and models become
more out-of-date. Lower, dotted lines represent (balanced) ac-
curacy without retraining or updating TKG; upper, solid lines
represent (balanced) accuracy after retraining and updating the
TKG on the previous month’s data.
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Fig. 9: Beeswarm plot of the top 10 most impactful features
in the XGB URL classifier for APT28. Each point represents
the SHAP values for a specific sample’s feature. The further
a datapoint is to the right, the more it is positively associated
with that APT. The color intensity reflects the value of the
normalized feature.

D. Model Explainability

The SHapley Additive exPlanations (SHAP) framework [50]
is a method to explain which features have the strongest effect
on a machine learning model’s prediction. The traditional
machine learning models that we used for individual IOC
attribution can use this technique to generate precise signatures
that uniquely characterize individual IOCs that specific threat
groups might deploy. As an example, Figure 9 depicts the top
10 most important features for the threat actor class APT28,
derived from our XGB URL classifier.

We observe that APT28 activity has higher levels of URL
entropy, and those URLs host gzip-encoded files. High entropy
in URLs might indicate obfuscation techniques or attempts
to hide malicious intent, making automated detection more
challenging. It could also imply that the reported URLs were
used to host files, whose names were similarly obfuscated,
or randomized. These observations agree with the known
techniques, tactics, and procedures of APT28 [51], [52], [53].
The gzip-encoded files hosted at these URLs could be an
attempt to evade standard detection mechanisms that monitor
file content. The use of gzip specifically hints that they prefer
GNU-based operating systems for their infrastructure.

For the graph-based models, we can use explanation models
to identify the most important IOCs involved with a given
event. We use GNNExplainer [54] on a pretrained 3-layer
GNN to find the subgraph that contributed most to the
model’s prediction. Figure 10 illustrates one such subgraph
for an APT28 event. We observe several IP addresses (blue)
surrounding the event being classified (red). Upon further
examination, these IP addresses are mostly Latvian, and host
links to phishing websites and malware droppers. The impor-
tant domains (green) are similarly flagged as malicious. One
domain, nethostnet[.]com, was reused by a different
campaign, as it creates a path to another APT28 event (pink).

Though there does exist an important path between two
APT28 events, it is significant to note that the vast majority of
important edges are between the event and individual IOCs,
meaning resource reuse is not the primary method by which
the GNN is making its predictions. Rather, the features of IOC

Fig. 10: Subgraph identified by GNNExplainer of the top 15
most important nodes used to correctly classify an APT28
event (the red node in the middle). The darkness of edge
weights indicates each edge’s importance in the classification.

nodes, such as their country of origin, or DNS registry history
seem to make a larger impact on how the model makes its
predictions. Algorithms like GNNExplainer allow analysts to
quickly identify the most significant IOCs used in the model’s
prediction. Even if the prediction is wrong, analysts may still
use the IOCs identified as important to continue their search.
This aspect of the TRAIL system could allow for faster, and
more robust attribution by humans, as it identifies important
IOCs that as a group, categorize the behavior of an adversary.

VIII. RELATED WORK

Prior, non-technical works have said, “attribution is an art:
no purely technical routine, simple or complex, can formalize,
calculate, quantify, or fully automate attribution.” [55, p.
30]. Such works generally dissuade analysts from relying on
statistical means for attribution [8]. Nonetheless, data scientists
keep inventing them. In this section, we will discuss some of
these related works and compare them to our approach.

Binary file attribution is a well-studied field wherein
analysts attempt to attribute malware to the threat group
that created it. Perhaps because there are so many avail-
able datasets [12], [25], [26] there are many approaches.
Interestingly, older approaches attribute binaries to specific
countries rather than APTs [14], but more recent approaches
recognize that individual countries can contain multiple threat
actors [10], [15], [16]. We were particularly influenced by [13]:
their model, a fusion of SMOTE and RF, counteracts the
challenges of data imbalance and multiclassification. We built
upon this approach for IOC attribution using not just RF, but
XGB, and NNs, which introduced an additional layer of depth,
potentially capturing more intricate patterns in the data.

Non-binary IOC Analysis has had considerably less atten-
tion than malware attribution. Most related works analyzing
this class of IOCs predict if individual domains or URLs
were malicious or benign, rather than which APT produced
them [17], [19], [20], [21], [22]. Notably, [56] and [57] utilize
label propagation through IP and domain graphs, but their
approaches classify individual IOCs as either malicious or
benign. This makes it difficult to compare our approach to
prior works as our dataset is comprised only of IOCs that have
appeared in cyber-incidents, meaning we assume that they are
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all malicious. We were particularly influenced by the method
used by Thin [18] to generate features for domains. They
also supplement lexical features with counts of DNS records,
though they classify the domains as malicious or benign. The
most similar approach we found to our own was that of Kazato
et al. [45]. They also built a knowledge graph from OSINT
sources; however, they lack the notion of an event node. They
also analyzed their graph with a GNN; however, it was to
predict if IOCs are malicious or not. It would be difficult to
directly compare our approach to theirs, not just because they
use an entirely different graph schema, but because they label
IOCs as malicious or benign rather than the events that used
them. We feel our work builds on theirs, as our graph has
100x more nodes, and our analysis is more granular.

IOC Graphs have been gaining traction lately as a tool
to understand attacker behavior. Pelofske et al. [11] have
the most expansive one, with node types for hashes, CVEs,
usernames, and more in addition to IPs and domains, all
collected from OSINT sources. Notably, they also use the
concept of event nodes, though they do not attribute them to
APTs. They analyze resource reuse and the cliques that form
around attack infrastructure, however, they ignore the relations
between IOCs themselves, focusing only on first-order IOCs
and edges from them to events. Similarly, Ren et al. [58]
crawled OSINT sources to construct a graph of higher-level
descriptors, relating attacks to victims and the infrastructure
used. They did not use this for automated attribution; rather
they used their knowledge graph to generate human-readable
descriptors of attacker behavior and to summarize their ac-
tivities. Sebastián & Caballero utilize a similar IOC graph to
detect malicious developers attempting ban evasion in mobile
app markets [59]. Using a pruned IOC graph, their attribution
is based on path detection between developers in the IOC
graph. Other graph-based approaches, such as [60] and [61]
use more behavioral descriptors for their relations and relate
APTs to each other rather than to individual events, though
neither approach attempts to use the knowledge graphs they
generate for automated attribution.

IX. DISCUSSION

Limitations: Though we have demonstrated that analysis
of the TKG can aid in attributing cyberattacks, our method
does have several limitations. For example, the GNN and
traditional ML models can only attribute events to one of
the 22 APTs they were trained to classify. If they observe
data from unknown APTs or non-APT malware, it would
incorrectly attribute the event to one of the APTs it was
trained to classify. It would require retraining for these models
to classify new APTs. While this is a fundamental flaw in
supervised learning approaches, there exist potential solutions
in confidence-based thresholding or unsupervised approaches.
For example, label propagation does not have this issue, as it
is non-parametric. This means if labeled data from an unseen
APT is added to the TKG, no retraining is required for label
propagation to classify a future, unlabeled event with paths
to this new training data. Additionally, our experiments and

prior works [11] showed that IOCs from the same APTs tend
to form dense cliques in IOC graphs. This means it is unlikely
that a short path would exist from a novel APT event to
any labeled event in the TKG. The label propagation model
would output a low confidence score, or no score at all for the
new data. Implementing a thresholding system, where low-
confidence predictions are classified as “unknown” or “out
of distribution,” could account for this issue. Supervised and
unsupervised models could be used. We leave this as a subject
for future work

Another limitation on this study is data quality. For example,
there were many erroneous “URLs” in our dataset that were
actually javascript snippets that likely matched a regex pattern
and made their way into automated report generators. We
have endeavored to remove these. Still, incorrect associations
may be present in the dataset. It is also important to note
that attribution is rarely done with complete confidence [7];
however, for the purposes of our study, user-assigned labels
for an event’s threat actor are assumed to be ground truth.

Future Work: Including other node types, like hashes, in
the TKG could capture many more important relationships
between CTI reports. Investigating alternative labels is another
promising research direction. This work focused on classifying
APTs, but other categorization methods, such as classifying
by malicious versus benign, by country, or by motivation may
offer valuable insights. Finally, zero-shot inference to detect
novel APTs or benign indicators, either using the model’s
confidence score or through other means, would increase
robustness and usability in more realistic scenarios.

X. CONCLUSION

In this work, we created and present for others to analyze
the TRAIL Knowledge Graph. We collected co-occurring IOCs
from OSINT sources to act as ego-nets centered around a
node labeled with a threat actor that represents a cybersecurity
event. To find higher-order connections in the knowledge
graph we further enrich these IOCs, and through this process
connected 99.94% of the IOCs in one connected component.
Our analysis showed that using IOC features alone, individual
artifacts of cyberattacks could be attributed to their associated
threat actor with reasonable accuracy. When analyzed as
groups, using just the topology of the TKG, we could attribute
unlabeled cyber-attacks with 82% accuracy. Incorporating both
features and topology improved attribution accuracy to 85%.
Our results would suggest that though they try to hide their
tracks, when APTs attack, they often leave a TRAIL.
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